期刊文献+
共找到104篇文章
< 1 2 6 >
每页显示 20 50 100
Electrochemical Hydrogen Charging on Corrosion Behavior of Ti-6Al-4V Alloy in Artificial Seawater 被引量:1
1
作者 Yanxin Qiao Yue Qin +5 位作者 Huiling Zhou Lanlan Yang Xiaojing Wang Zhengbin Wang Zhenguang Liu Jiasheng Zou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期296-308,共13页
This study employs advanced electrochemical and surface characterization techniques to investigate the impact of electrochemical hydrogen charging on the corrosion behavior and surface film of the Ti-6Al-4V alloy.The ... This study employs advanced electrochemical and surface characterization techniques to investigate the impact of electrochemical hydrogen charging on the corrosion behavior and surface film of the Ti-6Al-4V alloy.The findings revealed the formation ofγ-TiH andδ-TiH_(2) hydrides in the alloy after hydrogen charging.Prolonging hydrogen charging resulted in more significant degradation of the alloy microstructure,leading to deteriorated protectiveness of the surface film.This trend was further confirmed by the electrochemical measurements,which showed that the corrosion resistance of the alloy progressively worsened as the hydrogen charging time was increased.Consequently,this work provides valuable insights into the mechanisms underlying the corrosion of Ti-6Al-4V alloy under hydrogen charging conditions. 展开更多
关键词 ti-6al-4V alloy Hydrogen charging Electrochemical corrosion Passive film
下载PDF
固溶温度对Ti-6Al-4V-4Mo合金组织与力学性能的影响
2
作者 张填昊 陈非 +1 位作者 王泽青 张晓东 《热加工工艺》 北大核心 2023年第6期134-136,141,共4页
对Ti-6Al-4V-4Mo合金进行不同温度固溶+550℃×6 h时效处理,研究了不同温度固溶处理对Ti-6Al-4V-4Mo合金组织与力学性能的影响。结果表明:在800~860℃,随着固溶温度的升高,时效处理后Ti-6Al-4V-4Mo合金中析出的弥散相逐渐增多,晶粒... 对Ti-6Al-4V-4Mo合金进行不同温度固溶+550℃×6 h时效处理,研究了不同温度固溶处理对Ti-6Al-4V-4Mo合金组织与力学性能的影响。结果表明:在800~860℃,随着固溶温度的升高,时效处理后Ti-6Al-4V-4Mo合金中析出的弥散相逐渐增多,晶粒未明显长大。固溶温度达到890℃时,时效处理合金中的弥散相发生聚集,晶粒有长大趋势。在800~920℃,随着固溶温度的升高,时效处理后Ti-6Al-4V-4Mo合金的抗拉强度、屈服强度逐渐升高,伸长率逐渐降低。860℃固溶+550℃×6 h时效处理Ti-6Al-4V-4Mo合金强塑性匹配最佳,其抗拉强度、屈服强度和伸长率分别为1124 MPa、996 MPa和14.6%。 展开更多
关键词 ti-6al-4v-4mo合金 固溶温度 显微组织 力学性能
下载PDF
Tribocorrosion behaviors of Ti-6Al-4V and Monel K500 alloys sliding against 316 stainless steel in artificial seawater 被引量:14
3
作者 陈君 阎逢元 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第6期1356-1365,共10页
The tribocorrosion behaviors of Ti-6Al-4V and Monel K500 alloys sliding against 316 stainless steel were investigated using a ring-on-block test rig in both artificial seawater and distilled water. It is found that fr... The tribocorrosion behaviors of Ti-6Al-4V and Monel K500 alloys sliding against 316 stainless steel were investigated using a ring-on-block test rig in both artificial seawater and distilled water. It is found that friction coefficients are in general larger in distilled water compared with seawater. The wear losses of Ti-6Al-4V and Monel K500 alloys are larger in seawater compared with distilled water. The mechanical action can destroy the passive film and increase the corrosion rate. The synergism effect between corrosion and wear occurs. The synergism action between corrosion and wear is related to the corrosion rate and with the increase of corrosion rate, the synergism becomes more important. 316 stainless steel suffers severe wear sliding against Monel K500 alloy compared with sliding against Ti-6Al-4V alloy in both distilled water and seawater. 展开更多
关键词 ti-6al-4V alloy monel K500 alloy seawater TRIBOCORROSION synergism effect
下载PDF
Hot deformation behavior of Ti-6Al-4V-0.1Ru alloy during isothermal compression 被引量:10
4
作者 Yu-feng XIA Wei JIANG +2 位作者 Qian CHENG Lai JIANG Li JIN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第1期134-146,共13页
The hot deformation behavior of Ti-6 Al-4 V-0.1 Ru titanium alloy was investigated by isothermal compression tests on a Gleeble-3500 thermal simulator over deformation temperature range of 1023-1423 K and strain rate ... The hot deformation behavior of Ti-6 Al-4 V-0.1 Ru titanium alloy was investigated by isothermal compression tests on a Gleeble-3500 thermal simulator over deformation temperature range of 1023-1423 K and strain rate of 0.01-10 s-1.Arrhenius-type constitutive models were developed for temperature ranges of bothα+βdual phase andβsingle phase at strain of 0.1.Afterwards,a series of material constants(including activation energy Q,material constants n,αand ln A)as polynomial functions of strain were introduced into Arrhenius-type models.Finally,the improved Arrhenius-type models in temperature field ofα+βandβphase were constructed.The results show that the improved Arrhenius-type models contribute to the calculation of Zener-Hollomon(Z)parameter,and the microstructural evolution mechanism is uncovered by combining microstructure observations with Z-parameter.Furthermore,the improved Arrhenius-type models are also helpful to improve the accuracy of finite element method(FEM)simulation in the deformation process of Ti-6 Al-4 V-0.1 Ru titanium alloy. 展开更多
关键词 ti-6al-4v-0.1Ru titanium alloy Arrhenius-type constitutive model Zener-Hollomon parameter microstructural evolution FEM simulation
下载PDF
Effect of heat treatment processing on microstructure and tensile properties of Ti-6Al-4V-10Nb alloy 被引量:5
5
作者 Hong SUN Li-ming YU +4 位作者 Yong-chang LIU Li-ye ZHANG Chen-xi LIU Hui-jun LI Jie-feng WU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第1期59-66,共8页
Effects of heat treatment processing on the microstructure and mechanical properties of Ti-6Al-4V-10Nb alloy were investigated. The microstructures were investigated by SEM, TEM and XRD, and the mechanical properties ... Effects of heat treatment processing on the microstructure and mechanical properties of Ti-6Al-4V-10Nb alloy were investigated. The microstructures were investigated by SEM, TEM and XRD, and the mechanical properties were evaluated by tensile tests at room and elevated temperatures. The results indicate that the lath-like and globular primary α phase, secondary α phase and β phase are obtained after forging and heat treatment processing. The size of secondary α phase is much smaller than that of primary α phase. After heat treatment, the volume fraction of primary α phase is decreased, and that of secondary α phase is increased. With the increase of solution temperature, the volume fraction of primary α phase is gradually decreased, and that of secondary α phase is obviously increased. The yield strength and tensile strength of Ti-6Al-4V-10Nb alloy are significantly enhanced with the solution temperature increasing. 展开更多
关键词 ti-6al-4v-10Nb alloy heat treatment MICROSTRUCTURE primary α phase secondary α phase STRENGTH
下载PDF
Constitutive Modeling for Ti-6Al-4V Alloy Machining Based on the SHPB Tests and Simulation 被引量:5
6
作者 CHEN Guang KE Zhihong +1 位作者 REN Chengzu LI Jun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第5期962-970,共9页
A constitutive model is critical for the prediction accuracy of a metal cutting simulation. The highest strain rate involved in the cutting process can be in the range of 104-106 s 1. Flow stresses at high strain rate... A constitutive model is critical for the prediction accuracy of a metal cutting simulation. The highest strain rate involved in the cutting process can be in the range of 104-106 s 1. Flow stresses at high strain rates are close to that of cutting are difficult to test via experiments. Split Hopkinson compression bar (SHPB) technology is used to study the deformation behavior of Ti-6Al-4V alloy at strain rates of 10 -4-10 4s- 1. The Johnson Cook (JC) model was applied to characterize the flow stresses of the SHPB tests at various conditions. The parameters of the JC model are optimized by using a genetic algorithm technology. The JC plastic model and the energy density-based ductile failure criteria are adopted in the proposed SHPB finite element simulation model. The simulated flow stresses and the failure characteristics, such as the cracks along the adiabatic shear bands agree well with the experimental results. Afterwards, the SHPB simulation is used to simulate higher strain rate(approximately 3 × 10 4 s -1) conditions by minimizing the size of the specimen. The JC model parameters covering higher strain rate conditions which are close to the deformation condition in cutting were calculated based on the flow stresses obtained by using the SHPB tests (10 -4 - 10 4 s- 1) and simulation (up to 3 × 10 4 s - 1). The cutting simulation using the constitutive parameters is validated by the measured forces and chip morphology. The constitutive model and parameters for high strain rate conditions that are identical to those of cutting were obtained based on the SHPB tests and simulation. 展开更多
关键词 constitutive model ti-6al-4V alloy SHPB test high strain rate MACHINING
下载PDF
Effect of wet shot peening on Ti-6Al-4V alloy treated by ceramic beads 被引量:7
7
作者 陈国清 焦岩 +3 位作者 田唐永 张新华 李志强 周文龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期690-696,共7页
Ti-6Al-4V alloy was processed by wet shot peening with ceramic beads. The effects of the shot peened intensity on the microstructure, surface morphology, and residual stress were investigated. A tensile-tensile fatigu... Ti-6Al-4V alloy was processed by wet shot peening with ceramic beads. The effects of the shot peened intensity on the microstructure, surface morphology, and residual stress were investigated. A tensile-tensile fatigue test was performed and the fracture mechanism was proposed. The results demonstrate that the surface roughness after wet shot peening is obviously lower than that after dry shot peening. With the increase of the shot peened intensity, the depth of the residual stress layer increases to 250 ktrn, and the maximum stress in this layer increases to -895 MPa. The fatigue strength also increases by 12.4% because of the wet shot peening treatment. The dislocation density of the surface layer is significantly enhanced after the wet shot peening with ceramic beads. The microstructure of the surface layer is obviously refined into ultra-fine grains. 展开更多
关键词 ti-6al-4V alloy wet shot peening microstructure residual stress fatigue property
下载PDF
Effect of electropulsing on deformation behavior of Ti-6Al-4V alloy during cold drawing 被引量:10
8
作者 周岩 陈国清 +1 位作者 付雪松 周文龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期1012-1021,共10页
Electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) were used to investigate effect of electropulsing on microstructure and texture evolution of Ti-6Al-4V during cold drawing. Rese... Electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) were used to investigate effect of electropulsing on microstructure and texture evolution of Ti-6Al-4V during cold drawing. Research results demonstrate that the electropulsing treatment (EPT) can enhance the deformability of the grains with unfavorable orientations, which makes the compatibility of deformation among grains much better. A comparison in texture evolution between conventional cold drawing and EPT cold drawing indicates that the EPT promotes prismatic 〈a〉 slip moving, restricts pyramidal 〈c+a〉 slip occurring and accommodates the deformation with c-component by grain boundary sliding. The fraction decrease of low-angle grain boundaries for samples deformed with EPT reveals that the application of electropulsing restricts the formation of the incidental dislocation boundaries and the geometrically necessary boundaries. 展开更多
关键词 ti-6al-4V alloy ELECTROPULSING cold drawing texture evolution
下载PDF
Mechanical properties of strengthened surface layer in Ti-6Al-4V alloy induced by wet peening treatment 被引量:5
9
作者 李康 付雪松 +2 位作者 陈国清 周文龙 李志强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第11期2868-2873,共6页
A modified surface layer was formed on Ti-6Al-4V alloy by wet peening treatment. The variations of the residual stress,nano-hardness and microstructure of the modified layer with depth from surface were studied using ... A modified surface layer was formed on Ti-6Al-4V alloy by wet peening treatment. The variations of the residual stress,nano-hardness and microstructure of the modified layer with depth from surface were studied using X-ray diffraction analysis,nano-indentation analysis, scanning electron microscopy and transmission electron microscopy observations. The results show thatboth the compressive residual stress and hardness decrease with increasing depth, and the termination depths are 160 and 80 μm,respectively. The microstructure observation indicates that within 80 μm, the compressive residual stress and the hardness areenhanced by the co-action of the grain refinement strengthening and dislocation strengthening. Within 80–160 μm, the compressiveresidual stress mainly derives from the dislocation strengthening. The strengthened layer in Ti-6Al-4V alloy after wet peeningtreatment was quantitatively analyzed by a revised equation with respect to a relation between hardness and yield strength. 展开更多
关键词 ti-6al-4V alloy wet peening nano-hardness compressive residual stress local yield strength
下载PDF
Influence of material models on theoretical forming limit diagram prediction for Ti-6Al-4V alloy under warm condition 被引量:3
10
作者 Nitin KOTKUNDE Sashank SRINIVASAN +2 位作者 Geetha KRISHNA Amit Kumar GUPTA Swadesh Kumar SINGH 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第3期736-746,共11页
Forming limit diagram (FLD) is an important performance index to describe the maximum limit of principal strains that can be sustained by sheet metals till to the onset of localized necking. It offers a convenient and... Forming limit diagram (FLD) is an important performance index to describe the maximum limit of principal strains that can be sustained by sheet metals till to the onset of localized necking. It offers a convenient and useful tool to predict the forming limit in the sheet metal forming processes. In the present study, FLD has been determined experimentally for Ti?6Al?4V alloy at 400 °C by conducting a Nakazima test with specimens of different widths. Additionally, for theoretical FLD prediction, various anisotropic yield criteria (Barlat 1989, Barlat 1996, Hill 1993) and different hardening models viz., Hollomon power law (HPL), Johnson?Cook (JC), modified Zerilli–Armstrong (m-ZA), modified Arrhenius (m-Arr) models have been developed. Theoretical FLDs have been determined using Marciniak and Kuczynski (M?K) theory incorporating the developed yield criteria and constitutive models. It has been observed that the effect of yield model is more pronounced than the effect of constitutive model for theoretical FLDs prediction. However, the value of thickness imperfection factor (f0) is solely dependent on hardening model. Hill (1993) yield criterion is best suited for FLD prediction in the right hand side region. Moreover, Barlat (1989) yield criterion is best suited for FLD prediction in left hand side region. Therefore, the proposed hybrid FLD in combination with Barlat (1989) and Hill (1993) yield models with m-Arr hardening model is in the best agreement with experimental FLD. 展开更多
关键词 ti-6al-4V alloy yield criteria hardening model Marciniak and Kuczynski theory forming limit diagram
下载PDF
铸态Ti-6Al-4V-0.1B合金的热变形行为及加工图 被引量:6
11
作者 于洋 熊柏青 +4 位作者 惠松骁 叶文君 宋晓云 刘睿 付艳艳 《材料热处理学报》 EI CAS CSCD 北大核心 2012年第6期142-146,共5页
在Gleeble-1500热模拟试验机上进行高温压缩试验,研究了变形温度为1000~1100℃,初始应变速率为0.01~1 s-1的铸态Ti-6Al-4V-0.1B合金的变形行为。基于动态材料模型建立了加工图,并观察了变形组织。结果表明:该合金为热敏感和应力敏感... 在Gleeble-1500热模拟试验机上进行高温压缩试验,研究了变形温度为1000~1100℃,初始应变速率为0.01~1 s-1的铸态Ti-6Al-4V-0.1B合金的变形行为。基于动态材料模型建立了加工图,并观察了变形组织。结果表明:该合金为热敏感和应力敏感型合金,热变形的最佳变形参数为1050~1100℃,应变速率在0.1~1 s-1之间。铸态大变形区组织为沿着变形方向拉长的原始β晶粒,晶粒组织内部出现针状马氏体,TiB相在变形的过程中出现折断,并沿着加工流线分布。 展开更多
关键词 铸态ti-6al-4v-0.1B合金 高温变形行为 加工图
下载PDF
Process parameters optimization of Ti-6Al-4V alloy sheet during hot stretch-creep forming 被引量:3
12
作者 肖军杰 李东升 +4 位作者 李小强 丁盼 赵凯 黄烜昭 续明进 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第2期420-428,共9页
Hot stretch-creep forming (SCF) is a novel technique to produce hard-to-form thin-walled metal components. Comprehensively considering the analysis results of the springback angle, yield strength and microstructure,... Hot stretch-creep forming (SCF) is a novel technique to produce hard-to-form thin-walled metal components. Comprehensively considering the analysis results of the springback angle, yield strength and microstructure, four hot SCF process parameters including temperature, stretch velocity, post stretch percentage and dwelling time of a Ti-6Al-4V alloy sheet were optimized using an orthogonal experiment. The results reveal that temperature is the most important factor on springback angle. The yield strength of the deformed material in 0° direction increases, while those in directions of 45° and 90° fluctuate around the original value. After hot SCF, the shape of some a phases changes from short thin grains to long slender ones, and the microhardness changes very little. The optimized parameters with temperature of 700 ℃, stretch velocity of 5 mm/min, post stretch percentage of 2% and dwelling time of 8 min are achieved finally. 展开更多
关键词 ti-6al-4V alloy hot stretch-creep forming SPRINGBACK orthogonal experiment OPTIMIZATION
下载PDF
Influence of hydrogen content on room temperature compressive properties of Ti-6Al-4V alloy at high strain rate 被引量:6
13
作者 袁宝国 于海平 李春峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第12期2943-2951,共9页
Electromagnetic forming tests were done at room temperature to reveal the influence of hydrogen content on the compressive properties of Ti-6Al-4V alloy at high strain rate. Microstructure was observed to reveal the m... Electromagnetic forming tests were done at room temperature to reveal the influence of hydrogen content on the compressive properties of Ti-6Al-4V alloy at high strain rate. Microstructure was observed to reveal the mechanism of hydrogen-enhanced compressive properties. The experimental results indicate that hydrogen has favorable effects on the compressive properties of Ti-6Al-4V alloy at high strain rate. Compression of Ti-6Al-4V alloy first increases up to a maximum and then decreases with the increase of hydrogen content at the same discharge energy under EMF tests. The compression increases by 47.0% when 0.2% (mass fraction) hydrogen is introduced into Ti-6Al-4V alloy. The optimal hydrogen content for cold formation of Ti–6Al–4V alloy under EMF was determined. The reasons for the hydrogen-induced compressive properties were discussed. 展开更多
关键词 ti-6al-4V alloy hydrogen content electromagnetic forming compressive property thermohydrogen processing
下载PDF
Effect of grain size of primary α phase on bonding interface characteristic and mechanical property of press bonded Ti-6Al-4V alloy 被引量:3
14
作者 李宏 李淼泉 +1 位作者 刘宏彬 张超 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第1期93-99,共7页
The effect of grain size of primary α phase on the bonding interface characteristic and shear strength of bond was investigated in the press bonding of Ti-6Al-4V alloy. The quantitative results show that the average ... The effect of grain size of primary α phase on the bonding interface characteristic and shear strength of bond was investigated in the press bonding of Ti-6Al-4V alloy. The quantitative results show that the average size of voids increases from 0.8 to 2.6 μm and the bonding ratio decreases from 90.9% to 77.8% with an increase in grain size of primary α phase from 8.2 to 16.4 μm. The shape of voids changes from the tiny round to the irregular strip. The highest shear strength of bond can be obtained in the Ti-6Al-4V alloy with a grain size of 8.2 μm. This is contributed to the higher ability of plastic flow and more short-paths for diffusion in the alloy with smaller grain size of primary α phase, which promote the void closure process and the formation of α/β grains across bonding interface. 展开更多
关键词 grain size bonding interface void closure shear strength press bonding ti-6al-4V alloy
下载PDF
Dynamic fracture of Ti-6Al-4V alloy in Taylor impact test 被引量:4
15
作者 任宇 谭成文 +1 位作者 张静 王富耻 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第2期223-235,共13页
The dynamic fracture behaviors of Ti-6Al-4V alloy at high strain rate loading were investigated systemically through Taylor impact test, over the range of impact velocities from 145 m/s to 306 m/s. The critical impact... The dynamic fracture behaviors of Ti-6Al-4V alloy at high strain rate loading were investigated systemically through Taylor impact test, over the range of impact velocities from 145 m/s to 306 m/s. The critical impact velocity of fracture ranges from 217 m/s to 236 m/s. Smooth surfaces and ductile dimple areas were observed on the fracture surfaces. As the impact velocity reached 260 m/s, the serious melting regions were also observed on the fracture surfaces. Self-organization of cracks emerges when the impact velocity reaches 260 m/s, while some special cracks whose "tips" are not sharp but arc and smooth, and without any evidence of deformation or adiabatic shear band were also observed on the impact end surfaces. Examination of the sections of these special cracks reveals that the cracks expand along the two maximum shear stress directions respectively, and finally intersect as a tridimensional "stagger ridge" structure. 展开更多
关键词 ti-6al-4V alloy dynamic fracture behavior adiabatic shear band Taylor impact test
下载PDF
Use of a Laser/TIG Combination for Surface Modification of Ti-6Al-4V Alloy 被引量:2
16
作者 M.Labudovic and R.Kovacevic Southern Methodist University, Dept. of Mechanical Engineering, Dallas, Texas, U.S.A. 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第2期237-239,共3页
The surface modification of materials such as Ti-6Al-4V is necessary to improve their wear resistant properties for use in tribological applications. In this paper it is shown that a laser with low power and tungsten ... The surface modification of materials such as Ti-6Al-4V is necessary to improve their wear resistant properties for use in tribological applications. In this paper it is shown that a laser with low power and tungsten inert gas (TIG) can be combined together for surface modification of Ti-6Al-4V alloy, and when performed in a controlled atmosphere of pure nitrogen or a mixture of nitrogen and argon, can produce a wear-resistant surface alloy. Compared with laser processing, a cheaper surface modification process has been developed involving a shorter processing time, which is free of stringent requirements such as a vacuum system. 展开更多
关键词 TI TIG Use of a Laser/TIG Combination for Surface modification of ti-6al-4V alloy Al
下载PDF
添加Nd元素对Ti-6Al-4V-2Cr合金组织细化的影响 被引量:2
17
作者 王文焱 黄文君 +5 位作者 邵昌 张豪胤 史士钦 谢敬佩 黄亚波 刘冀尧 《粉末冶金材料科学与工程》 EI 北大核心 2016年第5期760-766,共7页
采用冷等静压–真空烧结法制备Ti-6Al-4V-2Cr-1Nd合金,然后进行固溶及时效热处理,通过实验与最小错配度理论计算,研究Nd元素对该合金组织细化的影响,并分析细化机理。结果表明,添加1%(质量分数)的稀土元素Nd后,析出相Nd2O3能有效促进晶... 采用冷等静压–真空烧结法制备Ti-6Al-4V-2Cr-1Nd合金,然后进行固溶及时效热处理,通过实验与最小错配度理论计算,研究Nd元素对该合金组织细化的影响,并分析细化机理。结果表明,添加1%(质量分数)的稀土元素Nd后,析出相Nd2O3能有效促进晶粒细化。二维错配度的计算结果证明析出相Nd2O3是有效的形核剂,可促进非均匀形核,增加形核率,从而使晶粒细化。通过对合金试样薄区进行高分辨率观察,发现另一种絮状的、非常细小的、弥散分布的Nd2Ti4O11相,由于其界面错配度较低,也可作为非均匀形核的核心,促进形核,起到细化晶粒的作用。 展开更多
关键词 Nd元素 ti-6al-4v-2Cr-1Nd合金 错配度 析出相 形核剂 细化晶粒
下载PDF
Ti-4Al-5Mo-6Cr-5V-1Nb合金的热变形行为及组织演变研究
18
作者 周琳 刘运玺 +1 位作者 陈玮 付明杰 《热加工工艺》 北大核心 2022年第2期45-50,共6页
采用Gleeble-3800动态模拟实验机,研究了亚稳β钛合金Ti-4Al-5Mo-6Cr-5V-1Nb在变形温度700~900℃、应变速率0.001~1s^(-1)、变形量10%~50%的热变形行为,分析了该合金在热变形过程中的组织性能演变规律。结果表明:随变形量的增加,合金的... 采用Gleeble-3800动态模拟实验机,研究了亚稳β钛合金Ti-4Al-5Mo-6Cr-5V-1Nb在变形温度700~900℃、应变速率0.001~1s^(-1)、变形量10%~50%的热变形行为,分析了该合金在热变形过程中的组织性能演变规律。结果表明:随变形量的增加,合金的流动应力曲线变化不大,主变形区组织畸变程度增大,且变形晶的动态再结晶增加;随变形温度的增加,合金的峰值应力及稳态流变应力呈降低趋势,组织变形趋于均匀分布,动态再结晶程度亦增加,且因应力诱发相变导致组织在稍低于相变点的790℃完全转化为β相;随应变速率增加,合金的峰值应力及稳态流变应力增加,组织变形不均匀程度增加,动态再结晶程度降低。该合金为变形温度、应变速率敏感型材料,其温度敏感性随应变速率的增加而逐渐增强,应变速率敏感性随温度的增加而逐渐减弱。 展开更多
关键词 ti-4al-5mo-6Cr-5v-1Nb合金 热变形行为 流变应力 组织演化
下载PDF
机械用粉末锻造Ti-6Al-4V-1Nb合金的性能研究 被引量:1
19
作者 刘志英 王晓峰 《热加工工艺》 北大核心 2019年第11期124-126,共3页
采用不同的粉末锻造温度制备了机械用Ti-6Al-4V-1Nb合金,并进行了力学性能和磨损性能的测试与分析。结果表明:随粉末锻造温度从1250℃增加到1370℃,试样的屈服强度先增大后减小,断后伸长率和磨损体积先减小后增大,试样的耐磨损性能先提... 采用不同的粉末锻造温度制备了机械用Ti-6Al-4V-1Nb合金,并进行了力学性能和磨损性能的测试与分析。结果表明:随粉末锻造温度从1250℃增加到1370℃,试样的屈服强度先增大后减小,断后伸长率和磨损体积先减小后增大,试样的耐磨损性能先提高后下降。机械用Ti-6Al-4V-1Nb合金的粉末锻造温度优选为1310℃。 展开更多
关键词 粉末锻造 ti-6al-4v-1Nb合金 锻造温度 力学性能 磨损性能
下载PDF
Quasi-static and dynamic tensile behaviors in electron beam welded Ti-6Al-4V alloy
20
作者 张静 谭成文 +2 位作者 任宇 王富耻 才鸿年 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第1期39-44,共6页
The quasi-static and dynamic tensile behaviors in electron beam welded(EBW) Ti-6Al-4V alloy were investigated at strain rates of 10-3 and 103 s-1,respectively,by materials test system(MTS) and reconstructive Hopki... The quasi-static and dynamic tensile behaviors in electron beam welded(EBW) Ti-6Al-4V alloy were investigated at strain rates of 10-3 and 103 s-1,respectively,by materials test system(MTS) and reconstructive Hopkinson bars apparatus.The microstructures of the base metal(BM) and the welded metal(WM) were observed with optical microscope.The fracture characteristics of the BM and WM were characterized with scanning electronic microscope.In Ti-6Al-4V alloy joint,the flow stress of WM is higher than that of BM,while the fracture strain of WM is less than that of BM at strain rates of 103 and 10-3 s-1,respectively.The fracture strain of WM has apparent improvement when the strain rate rises from 10-3 to 103 s-1,while the fracture strain of BM almost has no change.At the same time,the fracture mode of WM alters from brittle to ductile fracture,which causes improvement of the fracture strain of WM. 展开更多
关键词 ti-6al-4V alloy electron beam welding quasi-static tensile behavior dynamic behavior fracture mode
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部