This study employs advanced electrochemical and surface characterization techniques to investigate the impact of electrochemical hydrogen charging on the corrosion behavior and surface film of the Ti-6Al-4V alloy.The ...This study employs advanced electrochemical and surface characterization techniques to investigate the impact of electrochemical hydrogen charging on the corrosion behavior and surface film of the Ti-6Al-4V alloy.The findings revealed the formation ofγ-TiH andδ-TiH_(2) hydrides in the alloy after hydrogen charging.Prolonging hydrogen charging resulted in more significant degradation of the alloy microstructure,leading to deteriorated protectiveness of the surface film.This trend was further confirmed by the electrochemical measurements,which showed that the corrosion resistance of the alloy progressively worsened as the hydrogen charging time was increased.Consequently,this work provides valuable insights into the mechanisms underlying the corrosion of Ti-6Al-4V alloy under hydrogen charging conditions.展开更多
The isothermal compression test for Ti-6Al-7Nb alloy was conducted by using Gleeble-3800 thermal simulator.The hot deformation behavior of Ti-6Al-7Nb alloy was investigated in the deformation temperature ranges of 940...The isothermal compression test for Ti-6Al-7Nb alloy was conducted by using Gleeble-3800 thermal simulator.The hot deformation behavior of Ti-6Al-7Nb alloy was investigated in the deformation temperature ranges of 940-1030℃and the strain rate ranges of 0.001-10 s^(-1).Meanwhile,the activation energy of thermal deformation was computed.The results show that the flow stress of Ti-6Al-7Nb alloy increases with increasing the strain rate and decreasing the deformation temperature.The activation energy of thermal deformation for Ti-6Al-7Nb alloy is much greater than that for self-diffusion ofα-Ti andβ-Ti.Considering the influence of strain on flow stress,the strain-compensated Arrhenius constitutive model of Ti-6Al-7Nb alloy was established.The error analysis shows that the model has higher accuracy,and the correlation coefficient r and average absolute relative error are 0.9879 and 4.11%,respectively.The processing map(PM)of Ti-6Al-7Nb alloy was constructed by the dynamic materials model and Prasad instability criterion.According to PM and microstructural observation,it is found that the main form of instability zone is local flow,and the deformation mechanisms of the stable zone are mainly superplasticity and dynamic recrystallization.The optimal processing parameters of Ti-6Al-7Nb alloy are determined as follows:960-995℃/0.01-0.18 s^(-1)and 1000-1030℃/0.001-0.01 s^(-1).展开更多
Titanium has been increasingly applied to biomedical application because of its improved mechanical characteristics, corrosion resistance and biocompatibility. However their application remains limited, due to the low...Titanium has been increasingly applied to biomedical application because of its improved mechanical characteristics, corrosion resistance and biocompatibility. However their application remains limited, due to the low strength and poor wear resistance of unalloyed titanium. The purpose of this study is to evaluate the friction and wear behavior of high-strength titanium alloys: Ti-6Al-7Nb used in femoral stem (total hip prosthesis). The oscillating friction and wear tests have been carried out in ambient air with oscillating tribotester in accord with standards ISO 7148, ASTM G99-95a, ASTM G 133-95 under different conditions of normal applied load (3, 6 and 10 N) and sliding speed (1, 15 and 25 mm.s-1), and as a counter pair we used the ball of 100C 6, 10 mm of diameter. The surface morphology of the titanium alloys has been characterized by SEM, EDAX, micro hardness, roughness analysis measurements. The behavior observed for both samples suggests that the wear and friction mechanism during the test is the same for Ti alloys, and to increase resistance to wear and friction of biomedical titanium alloys used in total hip prosthesis (femoral stems) the surface coating and treatment are required.展开更多
Effects of heat treatment processing on the microstructure and mechanical properties of Ti-6Al-4V-10Nb alloy were investigated. The microstructures were investigated by SEM, TEM and XRD, and the mechanical properties ...Effects of heat treatment processing on the microstructure and mechanical properties of Ti-6Al-4V-10Nb alloy were investigated. The microstructures were investigated by SEM, TEM and XRD, and the mechanical properties were evaluated by tensile tests at room and elevated temperatures. The results indicate that the lath-like and globular primary α phase, secondary α phase and β phase are obtained after forging and heat treatment processing. The size of secondary α phase is much smaller than that of primary α phase. After heat treatment, the volume fraction of primary α phase is decreased, and that of secondary α phase is increased. With the increase of solution temperature, the volume fraction of primary α phase is gradually decreased, and that of secondary α phase is obviously increased. The yield strength and tensile strength of Ti-6Al-4V-10Nb alloy are significantly enhanced with the solution temperature increasing.展开更多
The mechanical properties of Ti-23Al-17Nb (mole fraction,%) laser beam welding alloy joint at room temperature are comparable to that of the base materials.However,the strength and ductility of the as-welded joint det...The mechanical properties of Ti-23Al-17Nb (mole fraction,%) laser beam welding alloy joint at room temperature are comparable to that of the base materials.However,the strength and ductility of the as-welded joint deteriorate seriously after high temperature circulation.The effect of post-welded heat treatment on the microstructure and mechanical properties of the joint was investigated.The heat treatment was taken at 980 ℃ for 1.5 h,then furnace cooling and air cooling were performed separately.The results indicate that proper post-welded heat treatment improves the ductility of the joint at high temperature.展开更多
The main factors limiting the mass production of TiAI-based components are the high reactivity of TiAl- based alloys with the crucible or mould at high temperature. In this work, various crucibles (e.g. CaO, Y203 cer...The main factors limiting the mass production of TiAI-based components are the high reactivity of TiAl- based alloys with the crucible or mould at high temperature. In this work, various crucibles (e.g. CaO, Y203 ceramic crucibles and water-cooled copper crucible) were used to fabricate the Ti-47Al-2Cr-2Nb alloy in a vacuum induction furnace. The effects of crucible materials and melting parameters on the microstructure and mechanical properties of the alloy were analyzed by means of microstructure observation, chemical analysis, tensile test and fracture surface observation. The possibilities of melting TiAI alloys in crucibles made of CaO and Y2O3 refractory materials were also discussed.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.52001142,52005228,51801218,51911530211,51905110)Young Scientists Sponsorship Program by CAST(Grant No.2022QNRC001).
文摘This study employs advanced electrochemical and surface characterization techniques to investigate the impact of electrochemical hydrogen charging on the corrosion behavior and surface film of the Ti-6Al-4V alloy.The findings revealed the formation ofγ-TiH andδ-TiH_(2) hydrides in the alloy after hydrogen charging.Prolonging hydrogen charging resulted in more significant degradation of the alloy microstructure,leading to deteriorated protectiveness of the surface film.This trend was further confirmed by the electrochemical measurements,which showed that the corrosion resistance of the alloy progressively worsened as the hydrogen charging time was increased.Consequently,this work provides valuable insights into the mechanisms underlying the corrosion of Ti-6Al-4V alloy under hydrogen charging conditions.
基金the National Natural Science Foundation of China(Grant No.51464035).
文摘The isothermal compression test for Ti-6Al-7Nb alloy was conducted by using Gleeble-3800 thermal simulator.The hot deformation behavior of Ti-6Al-7Nb alloy was investigated in the deformation temperature ranges of 940-1030℃and the strain rate ranges of 0.001-10 s^(-1).Meanwhile,the activation energy of thermal deformation was computed.The results show that the flow stress of Ti-6Al-7Nb alloy increases with increasing the strain rate and decreasing the deformation temperature.The activation energy of thermal deformation for Ti-6Al-7Nb alloy is much greater than that for self-diffusion ofα-Ti andβ-Ti.Considering the influence of strain on flow stress,the strain-compensated Arrhenius constitutive model of Ti-6Al-7Nb alloy was established.The error analysis shows that the model has higher accuracy,and the correlation coefficient r and average absolute relative error are 0.9879 and 4.11%,respectively.The processing map(PM)of Ti-6Al-7Nb alloy was constructed by the dynamic materials model and Prasad instability criterion.According to PM and microstructural observation,it is found that the main form of instability zone is local flow,and the deformation mechanisms of the stable zone are mainly superplasticity and dynamic recrystallization.The optimal processing parameters of Ti-6Al-7Nb alloy are determined as follows:960-995℃/0.01-0.18 s^(-1)and 1000-1030℃/0.001-0.01 s^(-1).
文摘Titanium has been increasingly applied to biomedical application because of its improved mechanical characteristics, corrosion resistance and biocompatibility. However their application remains limited, due to the low strength and poor wear resistance of unalloyed titanium. The purpose of this study is to evaluate the friction and wear behavior of high-strength titanium alloys: Ti-6Al-7Nb used in femoral stem (total hip prosthesis). The oscillating friction and wear tests have been carried out in ambient air with oscillating tribotester in accord with standards ISO 7148, ASTM G99-95a, ASTM G 133-95 under different conditions of normal applied load (3, 6 and 10 N) and sliding speed (1, 15 and 25 mm.s-1), and as a counter pair we used the ball of 100C 6, 10 mm of diameter. The surface morphology of the titanium alloys has been characterized by SEM, EDAX, micro hardness, roughness analysis measurements. The behavior observed for both samples suggests that the wear and friction mechanism during the test is the same for Ti alloys, and to increase resistance to wear and friction of biomedical titanium alloys used in total hip prosthesis (femoral stems) the surface coating and treatment are required.
基金Projects(2015GB107003,2015GB119001)supported by the International Thermonuclear Experimental Reactor(ITER)Program,ChinaProjects(51474155,11672200,51674175)supported by the National Natural Science Foundation of China
文摘Effects of heat treatment processing on the microstructure and mechanical properties of Ti-6Al-4V-10Nb alloy were investigated. The microstructures were investigated by SEM, TEM and XRD, and the mechanical properties were evaluated by tensile tests at room and elevated temperatures. The results indicate that the lath-like and globular primary α phase, secondary α phase and β phase are obtained after forging and heat treatment processing. The size of secondary α phase is much smaller than that of primary α phase. After heat treatment, the volume fraction of primary α phase is decreased, and that of secondary α phase is increased. With the increase of solution temperature, the volume fraction of primary α phase is gradually decreased, and that of secondary α phase is obviously increased. The yield strength and tensile strength of Ti-6Al-4V-10Nb alloy are significantly enhanced with the solution temperature increasing.
文摘The mechanical properties of Ti-23Al-17Nb (mole fraction,%) laser beam welding alloy joint at room temperature are comparable to that of the base materials.However,the strength and ductility of the as-welded joint deteriorate seriously after high temperature circulation.The effect of post-welded heat treatment on the microstructure and mechanical properties of the joint was investigated.The heat treatment was taken at 980 ℃ for 1.5 h,then furnace cooling and air cooling were performed separately.The results indicate that proper post-welded heat treatment improves the ductility of the joint at high temperature.
文摘The main factors limiting the mass production of TiAI-based components are the high reactivity of TiAl- based alloys with the crucible or mould at high temperature. In this work, various crucibles (e.g. CaO, Y203 ceramic crucibles and water-cooled copper crucible) were used to fabricate the Ti-47Al-2Cr-2Nb alloy in a vacuum induction furnace. The effects of crucible materials and melting parameters on the microstructure and mechanical properties of the alloy were analyzed by means of microstructure observation, chemical analysis, tensile test and fracture surface observation. The possibilities of melting TiAI alloys in crucibles made of CaO and Y2O3 refractory materials were also discussed.