This study employs advanced electrochemical and surface characterization techniques to investigate the impact of electrochemical hydrogen charging on the corrosion behavior and surface film of the Ti-6Al-4V alloy.The ...This study employs advanced electrochemical and surface characterization techniques to investigate the impact of electrochemical hydrogen charging on the corrosion behavior and surface film of the Ti-6Al-4V alloy.The findings revealed the formation ofγ-TiH andδ-TiH_(2) hydrides in the alloy after hydrogen charging.Prolonging hydrogen charging resulted in more significant degradation of the alloy microstructure,leading to deteriorated protectiveness of the surface film.This trend was further confirmed by the electrochemical measurements,which showed that the corrosion resistance of the alloy progressively worsened as the hydrogen charging time was increased.Consequently,this work provides valuable insights into the mechanisms underlying the corrosion of Ti-6Al-4V alloy under hydrogen charging conditions.展开更多
The effects of interrupted aging on mechanical properties and corrosion resistance of 7A75 aluminum alloy extruded bar were investigated through various analyses,including electrical conductivity,mechanical properties...The effects of interrupted aging on mechanical properties and corrosion resistance of 7A75 aluminum alloy extruded bar were investigated through various analyses,including electrical conductivity,mechanical properties,local corrosion properties,and slow strain rate tensile stress corrosion tests.Microstructure characterization techniques such as metallographic microscopy,scanning electron microscopy(SEM),and transmission electron microscopy(TEM)were also employed.The results indicate that the tensile strength of the alloy produced by T6I6 aging is similar to that produced by T6I4 aging,and it even exceeds 700 MPa.Furthermore,the yield strength increases by 52.7 MPa,reaching 654.8 MPa after T6I6 aging treatment.The maximum depths of intergranular corrosion(IGC)and exfoliation corrosion(EXCO)decrease from 116.3 and 468.5μm to 89.5 and 324.3μm,respectively.The stress corrosion factor also decreases from 2.1%to 1.6%.These findings suggest that the alloy treated with T6I6 aging exhibits both high strength and excellent stress corrosion cracking resistance.Similarly,when the alloy is treated with T6I4,T6I6 and T6I7 aging,the sizes of grain boundary precipitates(GBPs)are found to be 5.2,18.4,and 32.8 nm,respectively.The sizes of matrix precipitates are 4.8,5.7 and 15.7 nm,respectively.The atomic fractions of Zn in GBPs are 9.92 at.%,8.23 at.%and 6.87 at.%,respectively,while the atomic fractions of Mg are 12.66 at.%,8.43 at.%and 7.00 at.%,respectively.Additionally,the atomic fractions of Cu are 1.83 at.%,2.47 at.%and 3.41 at.%,respectively.展开更多
The tribocorrosion behaviors of Ti-6Al-4V and Monel K500 alloys sliding against 316 stainless steel were investigated using a ring-on-block test rig in both artificial seawater and distilled water. It is found that fr...The tribocorrosion behaviors of Ti-6Al-4V and Monel K500 alloys sliding against 316 stainless steel were investigated using a ring-on-block test rig in both artificial seawater and distilled water. It is found that friction coefficients are in general larger in distilled water compared with seawater. The wear losses of Ti-6Al-4V and Monel K500 alloys are larger in seawater compared with distilled water. The mechanical action can destroy the passive film and increase the corrosion rate. The synergism effect between corrosion and wear occurs. The synergism action between corrosion and wear is related to the corrosion rate and with the increase of corrosion rate, the synergism becomes more important. 316 stainless steel suffers severe wear sliding against Monel K500 alloy compared with sliding against Ti-6Al-4V alloy in both distilled water and seawater.展开更多
Porous Ti-23%Nb(mole fraction)shape memory alloys(SMAs)were prepared successfully by microwave sintering with excellent outer finishing(without space holder).The effects of microwave-sintering on the microstructure,ph...Porous Ti-23%Nb(mole fraction)shape memory alloys(SMAs)were prepared successfully by microwave sintering with excellent outer finishing(without space holder).The effects of microwave-sintering on the microstructure,phase composition,phase-transformation temperature,mechanical properties and shape-memory effect were investigated.The results show that the density and size of porosity vary based on the sintering time and temperature,in which the smallest size and the most uniform pore shape are exhibited with Ti-23%Nb SMA after being sintered at 900°C for 30 min.The microstructure of porous Ti-Nb SMA consists of predominantα',α,andβphases in needle-like and plate-like morphologies,and their volume fractions vary based on the sintering time and temperature.Theβphase represents the largest phase due to the higher content ofβstabilizer element with little intensities ofαandα'phases.The highest ultimate strength and its strain are indicated for the sample sintered at 900°C for 30 min,while the best superelasticity is for the sample sintered at 1200°C for 30 min.The low-elastic modulus enables these alloys to avoid the problem of“stress shielding”.Therefore,microwave heating can be employed to sinter Ti-alloys for biomedical applications and improve the mechanical properties of these alloys.展开更多
To investigate the effect of hafnium addition on the solidification structure, Ti-46AI alloys with nominal compositions of Ti-46AI-xHf (x = 0, 3, 5, 7) (at.%) were arc-melted into small ingots in an argon atmosphe...To investigate the effect of hafnium addition on the solidification structure, Ti-46AI alloys with nominal compositions of Ti-46AI-xHf (x = 0, 3, 5, 7) (at.%) were arc-melted into small ingots in an argon atmosphere. The characteristics of the macrostructures and microstructures were studied using a linear intercept method, OM, SEM (BSE), XRD and TEM. The results showed that the ingots with Hf have near lamellar microstructure in columnar and dendrite morphology. The hafnium concentration has a strong effect on the columnar spacing refinement. Increasing Hf from 0 to 7 (at.%), the columnar spacing can be reduced from - 1000 to-400 μm. Constitute phases of the ingots are a2, a small amount of B2 and 7. Most of the B2 phases, richer in Hf and leaner in AI and Ti, exist on the node of the dendrite core in block shape and a little across the lamellar colonies in stick shape. The 7 phases exist on the boundaries of lamellar colonies in small cellular shape. There also exists a segregation of Hf on the columnar and dendrite core. Particularly, both the a-and ,β-phase form from the melt as prior phases. The possible phase sequencing during solidification and solid-state transformations with Hf is given in this paper.展开更多
Laser powder bed fusion(LPBF)is an advanced manufacturing technology;however,inappropriate LPBF process parameters may cause printing defects in materials.In the present work,the LPBF process of Ti-6.5Al-3.5Mo-1.5Zr-0...Laser powder bed fusion(LPBF)is an advanced manufacturing technology;however,inappropriate LPBF process parameters may cause printing defects in materials.In the present work,the LPBF process of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy was investigated by a two-step optimization approach.Subsequently,heat transfer and liquid flow behaviors during LPBF were simulated by a well-tested phenomenological model,and the defect formation mechanisms in the as-fabricated alloy were discussed.The optimized process parameters for LPBF were detected as laser power changed from 195 W to 210 W,with scanning speed of 1250 mm/s.The LPBF process was divided into a laser irradiation stage,a spreading flow stage,and a solidification stage.The morphologies and defects of deposited tracks were affected by liquid flow behavior caused by rapid cooling rates.The findings of this research can provide valuable support for printing defect-free metal components.展开更多
The bonding interface characteristic and shear strength of diffusion bonded Ti-17 titanium alloy at different bonding time were investigated. The results show that the average size of voids decreases while the amount ...The bonding interface characteristic and shear strength of diffusion bonded Ti-17 titanium alloy at different bonding time were investigated. The results show that the average size of voids decreases while the amount of voids decreases after increasing to the maximum value with the increasing bonding time. The irregular void with a scraggly edge tends to an ellipse void with smooth surface and then changes to a tiny void with round shape. The grains across bonding interface occur at bonding time of 60 min. The shear strength of bond increases with increasing bonding time, and the highest shear strength of bond is 887.4 MPa at 60 min. The contribution of plastic deformation on the void closure and the increase of shear strength is significant even though the action time of plastic deformation is short.展开更多
Ti-6Al-4V alloy was processed by wet shot peening with ceramic beads. The effects of the shot peened intensity on the microstructure, surface morphology, and residual stress were investigated. A tensile-tensile fatigu...Ti-6Al-4V alloy was processed by wet shot peening with ceramic beads. The effects of the shot peened intensity on the microstructure, surface morphology, and residual stress were investigated. A tensile-tensile fatigue test was performed and the fracture mechanism was proposed. The results demonstrate that the surface roughness after wet shot peening is obviously lower than that after dry shot peening. With the increase of the shot peened intensity, the depth of the residual stress layer increases to 250 ktrn, and the maximum stress in this layer increases to -895 MPa. The fatigue strength also increases by 12.4% because of the wet shot peening treatment. The dislocation density of the surface layer is significantly enhanced after the wet shot peening with ceramic beads. The microstructure of the surface layer is obviously refined into ultra-fine grains.展开更多
Electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) were used to investigate effect of electropulsing on microstructure and texture evolution of Ti-6Al-4V during cold drawing. Rese...Electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) were used to investigate effect of electropulsing on microstructure and texture evolution of Ti-6Al-4V during cold drawing. Research results demonstrate that the electropulsing treatment (EPT) can enhance the deformability of the grains with unfavorable orientations, which makes the compatibility of deformation among grains much better. A comparison in texture evolution between conventional cold drawing and EPT cold drawing indicates that the EPT promotes prismatic 〈a〉 slip moving, restricts pyramidal 〈c+a〉 slip occurring and accommodates the deformation with c-component by grain boundary sliding. The fraction decrease of low-angle grain boundaries for samples deformed with EPT reveals that the application of electropulsing restricts the formation of the incidental dislocation boundaries and the geometrically necessary boundaries.展开更多
Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding pro...Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding process were numerically simulated and experimentally measured. The results show that the rotated parabola body heat source is fit for the simulation of the electron beam welding. The temperature distribution is asymmetric along the weld center and the temperature in the titanium alloy plate is higher than that in the 304 STS plate. The thermal stress also appears to be in asymmetric distribution. The residual tensile stress mainly exists in the weld at the 304 STS side. The copper filler metal decreases the peak temperature and temperature grade in the joint as well as the residual stress. The longitudinal and lateral residual tensile strengths reduce by 66 MPa and 31 MPa, respectively. From the temperature and residual stress, it is concluded that copper is a good filler metal candidate for the electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel.展开更多
A layer of porous film containing Ca and P was prepared by the micro-arc oxidation method on the surface of a novel near β biomedical Ti-3Zr-2Sn-3Mo-25Nb alloy, and then NH2- active group was introduced to the films ...A layer of porous film containing Ca and P was prepared by the micro-arc oxidation method on the surface of a novel near β biomedical Ti-3Zr-2Sn-3Mo-25Nb alloy, and then NH2- active group was introduced to the films by activation treatment. The phase composition, surface micro-topography and elemental characteristics of the micro-arc oxidation films were investigated with XRD, SEM, EDS and XPS, and the osteoinduction of the micro-arc oxidation films was tested using the simulated body fluid immersion, the in-vitro osteoblast cultivation test and animal experiment. The results show that the oxide layer is a kind of porous ceramic intermixture and contains Ca and P. The films in the simulated body fluid can induce apatite formation, resulting in excellent bioactivity. The cell test discovers that osteoblasts can grow well on the surface of micro-arc oxidation films. And the Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy coated with active porous calcium-phosphate films shows better osteoinduction in vivo.展开更多
The haemocompatibility of Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy was studied after surface heparinization. A layer of sol-gel TiO2 films was applied on the alloy samples followed by active treatment in the bio-functiona...The haemocompatibility of Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy was studied after surface heparinization. A layer of sol-gel TiO2 films was applied on the alloy samples followed by active treatment in the bio-functionalized solution for introducing the OH- and groups, and then the heparin was immobilized on the active TiO2 films through the electrostatic self assembly technology. It is shown that the heparinized films are mainly composed of anatase and rutile with smooth and dense surface. In vitro blood compatibility was evaluated by haemolysis test, clotting time and platelet adhesion behavior tests. The results show that the haemocompatibility of the alloy could be significantly improved by surface heparinization.展开更多
A modified surface layer was formed on Ti-6Al-4V alloy by wet peening treatment. The variations of the residual stress,nano-hardness and microstructure of the modified layer with depth from surface were studied using ...A modified surface layer was formed on Ti-6Al-4V alloy by wet peening treatment. The variations of the residual stress,nano-hardness and microstructure of the modified layer with depth from surface were studied using X-ray diffraction analysis,nano-indentation analysis, scanning electron microscopy and transmission electron microscopy observations. The results show thatboth the compressive residual stress and hardness decrease with increasing depth, and the termination depths are 160 and 80 μm,respectively. The microstructure observation indicates that within 80 μm, the compressive residual stress and the hardness areenhanced by the co-action of the grain refinement strengthening and dislocation strengthening. Within 80–160 μm, the compressiveresidual stress mainly derives from the dislocation strengthening. The strengthened layer in Ti-6Al-4V alloy after wet peeningtreatment was quantitatively analyzed by a revised equation with respect to a relation between hardness and yield strength.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.52001142,52005228,51801218,51911530211,51905110)Young Scientists Sponsorship Program by CAST(Grant No.2022QNRC001).
文摘This study employs advanced electrochemical and surface characterization techniques to investigate the impact of electrochemical hydrogen charging on the corrosion behavior and surface film of the Ti-6Al-4V alloy.The findings revealed the formation ofγ-TiH andδ-TiH_(2) hydrides in the alloy after hydrogen charging.Prolonging hydrogen charging resulted in more significant degradation of the alloy microstructure,leading to deteriorated protectiveness of the surface film.This trend was further confirmed by the electrochemical measurements,which showed that the corrosion resistance of the alloy progressively worsened as the hydrogen charging time was increased.Consequently,this work provides valuable insights into the mechanisms underlying the corrosion of Ti-6Al-4V alloy under hydrogen charging conditions.
基金the Tianjin Key Laboratory of Fastening and Connection Technology Enterprises 2022—2023,China(No.TKLF2022-02-C-02)the technical support from the School of Materials Science and Engineering,Central South University,China.
文摘The effects of interrupted aging on mechanical properties and corrosion resistance of 7A75 aluminum alloy extruded bar were investigated through various analyses,including electrical conductivity,mechanical properties,local corrosion properties,and slow strain rate tensile stress corrosion tests.Microstructure characterization techniques such as metallographic microscopy,scanning electron microscopy(SEM),and transmission electron microscopy(TEM)were also employed.The results indicate that the tensile strength of the alloy produced by T6I6 aging is similar to that produced by T6I4 aging,and it even exceeds 700 MPa.Furthermore,the yield strength increases by 52.7 MPa,reaching 654.8 MPa after T6I6 aging treatment.The maximum depths of intergranular corrosion(IGC)and exfoliation corrosion(EXCO)decrease from 116.3 and 468.5μm to 89.5 and 324.3μm,respectively.The stress corrosion factor also decreases from 2.1%to 1.6%.These findings suggest that the alloy treated with T6I6 aging exhibits both high strength and excellent stress corrosion cracking resistance.Similarly,when the alloy is treated with T6I4,T6I6 and T6I7 aging,the sizes of grain boundary precipitates(GBPs)are found to be 5.2,18.4,and 32.8 nm,respectively.The sizes of matrix precipitates are 4.8,5.7 and 15.7 nm,respectively.The atomic fractions of Zn in GBPs are 9.92 at.%,8.23 at.%and 6.87 at.%,respectively,while the atomic fractions of Mg are 12.66 at.%,8.43 at.%and 7.00 at.%,respectively.Additionally,the atomic fractions of Cu are 1.83 at.%,2.47 at.%and 3.41 at.%,respectively.
基金Project (50823008) supported by the National Natural Science Foundation of ChinaProject (2009AA03Z105) supported by the High-tech Research and Development Program of China
文摘The tribocorrosion behaviors of Ti-6Al-4V and Monel K500 alloys sliding against 316 stainless steel were investigated using a ring-on-block test rig in both artificial seawater and distilled water. It is found that friction coefficients are in general larger in distilled water compared with seawater. The wear losses of Ti-6Al-4V and Monel K500 alloys are larger in seawater compared with distilled water. The mechanical action can destroy the passive film and increase the corrosion rate. The synergism effect between corrosion and wear occurs. The synergism action between corrosion and wear is related to the corrosion rate and with the increase of corrosion rate, the synergism becomes more important. 316 stainless steel suffers severe wear sliding against Monel K500 alloy compared with sliding against Ti-6Al-4V alloy in both distilled water and seawater.
基金the financial support under the University Research Grant No. Q.J130000.3024. 00M57
文摘Porous Ti-23%Nb(mole fraction)shape memory alloys(SMAs)were prepared successfully by microwave sintering with excellent outer finishing(without space holder).The effects of microwave-sintering on the microstructure,phase composition,phase-transformation temperature,mechanical properties and shape-memory effect were investigated.The results show that the density and size of porosity vary based on the sintering time and temperature,in which the smallest size and the most uniform pore shape are exhibited with Ti-23%Nb SMA after being sintered at 900°C for 30 min.The microstructure of porous Ti-Nb SMA consists of predominantα',α,andβphases in needle-like and plate-like morphologies,and their volume fractions vary based on the sintering time and temperature.Theβphase represents the largest phase due to the higher content ofβstabilizer element with little intensities ofαandα'phases.The highest ultimate strength and its strain are indicated for the sample sintered at 900°C for 30 min,while the best superelasticity is for the sample sintered at 1200°C for 30 min.The low-elastic modulus enables these alloys to avoid the problem of“stress shielding”.Therefore,microwave heating can be employed to sinter Ti-alloys for biomedical applications and improve the mechanical properties of these alloys.
基金supported by the National Natural Science Foundation of China(50771041)NCET 05-0350.
文摘To investigate the effect of hafnium addition on the solidification structure, Ti-46AI alloys with nominal compositions of Ti-46AI-xHf (x = 0, 3, 5, 7) (at.%) were arc-melted into small ingots in an argon atmosphere. The characteristics of the macrostructures and microstructures were studied using a linear intercept method, OM, SEM (BSE), XRD and TEM. The results showed that the ingots with Hf have near lamellar microstructure in columnar and dendrite morphology. The hafnium concentration has a strong effect on the columnar spacing refinement. Increasing Hf from 0 to 7 (at.%), the columnar spacing can be reduced from - 1000 to-400 μm. Constitute phases of the ingots are a2, a small amount of B2 and 7. Most of the B2 phases, richer in Hf and leaner in AI and Ti, exist on the node of the dendrite core in block shape and a little across the lamellar colonies in stick shape. The 7 phases exist on the boundaries of lamellar colonies in small cellular shape. There also exists a segregation of Hf on the columnar and dendrite core. Particularly, both the a-and ,β-phase form from the melt as prior phases. The possible phase sequencing during solidification and solid-state transformations with Hf is given in this paper.
基金Supported by Development of a Verification Platform for Product Design,Process and Information Exchange Standards in Additive Manufacturing (Grant No.2019-00899-1-1)Ministry of Science and Technology of the People’s Republic of China (Grant No.2017YFB1103000)+1 种基金National Natural Science Foundation of China (Grant No.51375242)Natural Science Foundation of Jiangsu Province (Grant No.BK20180483)。
文摘Laser powder bed fusion(LPBF)is an advanced manufacturing technology;however,inappropriate LPBF process parameters may cause printing defects in materials.In the present work,the LPBF process of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy was investigated by a two-step optimization approach.Subsequently,heat transfer and liquid flow behaviors during LPBF were simulated by a well-tested phenomenological model,and the defect formation mechanisms in the as-fabricated alloy were discussed.The optimized process parameters for LPBF were detected as laser power changed from 195 W to 210 W,with scanning speed of 1250 mm/s.The LPBF process was divided into a laser irradiation stage,a spreading flow stage,and a solidification stage.The morphologies and defects of deposited tracks were affected by liquid flow behavior caused by rapid cooling rates.The findings of this research can provide valuable support for printing defect-free metal components.
基金Project(51275416)supported by the National Natural Science Foundation of China
文摘The bonding interface characteristic and shear strength of diffusion bonded Ti-17 titanium alloy at different bonding time were investigated. The results show that the average size of voids decreases while the amount of voids decreases after increasing to the maximum value with the increasing bonding time. The irregular void with a scraggly edge tends to an ellipse void with smooth surface and then changes to a tiny void with round shape. The grains across bonding interface occur at bonding time of 60 min. The shear strength of bond increases with increasing bonding time, and the highest shear strength of bond is 887.4 MPa at 60 min. The contribution of plastic deformation on the void closure and the increase of shear strength is significant even though the action time of plastic deformation is short.
基金Project(NCET-10-0278)supported by Program for New Century Excellent Talents in University,China
文摘Ti-6Al-4V alloy was processed by wet shot peening with ceramic beads. The effects of the shot peened intensity on the microstructure, surface morphology, and residual stress were investigated. A tensile-tensile fatigue test was performed and the fracture mechanism was proposed. The results demonstrate that the surface roughness after wet shot peening is obviously lower than that after dry shot peening. With the increase of the shot peened intensity, the depth of the residual stress layer increases to 250 ktrn, and the maximum stress in this layer increases to -895 MPa. The fatigue strength also increases by 12.4% because of the wet shot peening treatment. The dislocation density of the surface layer is significantly enhanced after the wet shot peening with ceramic beads. The microstructure of the surface layer is obviously refined into ultra-fine grains.
基金Project (NCET-10-0278) supported by the Program for New Century Excellent Talents in University,China
文摘Electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) were used to investigate effect of electropulsing on microstructure and texture evolution of Ti-6Al-4V during cold drawing. Research results demonstrate that the electropulsing treatment (EPT) can enhance the deformability of the grains with unfavorable orientations, which makes the compatibility of deformation among grains much better. A comparison in texture evolution between conventional cold drawing and EPT cold drawing indicates that the EPT promotes prismatic 〈a〉 slip moving, restricts pyramidal 〈c+a〉 slip occurring and accommodates the deformation with c-component by grain boundary sliding. The fraction decrease of low-angle grain boundaries for samples deformed with EPT reveals that the application of electropulsing restricts the formation of the incidental dislocation boundaries and the geometrically necessary boundaries.
基金Foundation item:Project (2010CB731704) supported by the National Basic Research Program of ChinaProject (51075189) supported by the National Natural Science Foundation of China
文摘Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding process were numerically simulated and experimentally measured. The results show that the rotated parabola body heat source is fit for the simulation of the electron beam welding. The temperature distribution is asymmetric along the weld center and the temperature in the titanium alloy plate is higher than that in the 304 STS plate. The thermal stress also appears to be in asymmetric distribution. The residual tensile stress mainly exists in the weld at the 304 STS side. The copper filler metal decreases the peak temperature and temperature grade in the joint as well as the residual stress. The longitudinal and lateral residual tensile strengths reduce by 66 MPa and 31 MPa, respectively. From the temperature and residual stress, it is concluded that copper is a good filler metal candidate for the electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel.
基金Project (2005CB623904) supported by the National Basic Research Program of ChinaProject (30770586) supported by the National Natural Science Foundation of China+1 种基金Project (31011120049) supported by the Australia-China special fund, International Science Linkages Program co-supported by the Department of Innovation, Industry, Science and Research of Australia, and the Ministry of Science and Technology and National Science Foundation of ChinaProject (2010ZDKG-96) supported by the major Subject of "13115" Programs of Shaan’xi Province, China
文摘A layer of porous film containing Ca and P was prepared by the micro-arc oxidation method on the surface of a novel near β biomedical Ti-3Zr-2Sn-3Mo-25Nb alloy, and then NH2- active group was introduced to the films by activation treatment. The phase composition, surface micro-topography and elemental characteristics of the micro-arc oxidation films were investigated with XRD, SEM, EDS and XPS, and the osteoinduction of the micro-arc oxidation films was tested using the simulated body fluid immersion, the in-vitro osteoblast cultivation test and animal experiment. The results show that the oxide layer is a kind of porous ceramic intermixture and contains Ca and P. The films in the simulated body fluid can induce apatite formation, resulting in excellent bioactivity. The cell test discovers that osteoblasts can grow well on the surface of micro-arc oxidation films. And the Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy coated with active porous calcium-phosphate films shows better osteoinduction in vivo.
基金Project (31100693/C100302) supported by the National Natural Science Foundation of ChinaProject (31011120049) supported by the Australia-China Special Fund, International Science Linkages Program co-supported by the Department of Innovation, Industry, Science and Research of Australia, and the Ministry of Science and Technology and National Science Foundation of China+1 种基金Project(2010ZDKG-96) supported by the Major Subject of "13115" Programs of Shaan’xi Province, ChinaProject (2012CB619102) supported by the National Basic Research Program of China
文摘The haemocompatibility of Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy was studied after surface heparinization. A layer of sol-gel TiO2 films was applied on the alloy samples followed by active treatment in the bio-functionalized solution for introducing the OH- and groups, and then the heparin was immobilized on the active TiO2 films through the electrostatic self assembly technology. It is shown that the heparinized films are mainly composed of anatase and rutile with smooth and dense surface. In vitro blood compatibility was evaluated by haemolysis test, clotting time and platelet adhesion behavior tests. The results show that the haemocompatibility of the alloy could be significantly improved by surface heparinization.
基金Project(51405059)supported by the National Natural Science Foundation of ChinaProject(2014M551074)supported by the China Postdoctoral Science FoundationProject(NCET-10-0278)supported by the Program for New Century Excellent Talents in University
文摘A modified surface layer was formed on Ti-6Al-4V alloy by wet peening treatment. The variations of the residual stress,nano-hardness and microstructure of the modified layer with depth from surface were studied using X-ray diffraction analysis,nano-indentation analysis, scanning electron microscopy and transmission electron microscopy observations. The results show thatboth the compressive residual stress and hardness decrease with increasing depth, and the termination depths are 160 and 80 μm,respectively. The microstructure observation indicates that within 80 μm, the compressive residual stress and the hardness areenhanced by the co-action of the grain refinement strengthening and dislocation strengthening. Within 80–160 μm, the compressiveresidual stress mainly derives from the dislocation strengthening. The strengthened layer in Ti-6Al-4V alloy after wet peeningtreatment was quantitatively analyzed by a revised equation with respect to a relation between hardness and yield strength.