Multilayered Ti-Al based intermetallic sheets were fabricated by sintering alternately layered titanium and aluminum foils.The microstructure and phase formation of the obtained sheets under different sintering condit...Multilayered Ti-Al based intermetallic sheets were fabricated by sintering alternately layered titanium and aluminum foils.The microstructure and phase formation of the obtained sheets under different sintering conditions were evaluated by various techniques.The results reveal that when the sintering temperature is above the melting point of aluminum,the self-propagating high-temperature synthesis reaction occurs between Ti and Al,and forms various phases of Ti-based solid solutions including α-Ti Ti3Al,TiAl,TiAl2 and α-Ti including TiAl3,etc.When the sintering time increased,Ti-based solid solution,TiAl2 and TiAl3 disappeared gradually,and the sheet containing Ti3Al and TiAl phases in a multilayered structure formed finally.A lot of voids were also observed in the sintered structures,which were caused by the melting Al,Kirkendall effect and the difference of molar volumes between reactants and products.The voids were eliminated and a dense sample was obtained by the following hot press.展开更多
The microstructural stability of lamellar TiAl base alloys at high temperatures was studied by conventional and high resolution transmission electron microscopy. The influence of substructures on the thermal stability...The microstructural stability of lamellar TiAl base alloys at high temperatures was studied by conventional and high resolution transmission electron microscopy. The influence of substructures on the thermal stability of lamellar structure was emphasized. These substructures produced by thermal mechanical treatments include the interfacial dislocations and ledges, the subgrain boundaries, the impinged T(Q) twins and misorientated lamellar interfaces. The microstructural change of three kinds of lamellar TiAl base alloys containing differents type and densities of substructures were compared during exposure at 800~1 000 ℃. It was found that the existence of such substructures could accelerate the degeneration of lamellar structure, leading to the rapid necking and break up of α 2 plates, the coarsening of γ plates, and the formation of new γ grains. As a result, the lamellar structure with substructures started to degenerate after thermal exposure at 800℃ for 4.5 h. While only slight coarsening was observed at the colony boundaries in the lamellar structure without substructures even after exposure at 900 ℃ for 7 d.展开更多
The isothermal oxidation behavior of a Ti3Al-based alloy (Ti-24Al-14Nb-3V-0.5Mo-0.3Si, molar fraction, %) at 700-1 000 ℃ in air was investigated. The oxidation kinetics of tested alloy approximately obeys the parabol...The isothermal oxidation behavior of a Ti3Al-based alloy (Ti-24Al-14Nb-3V-0.5Mo-0.3Si, molar fraction, %) at 700-1 000 ℃ in air was investigated. The oxidation kinetics of tested alloy approximately obeys the parabolic law, which shows that the oxidation process is dominated by the diffusion of ions. The oxidation diffusion activity energy is 241.32 kJ/mol. The tested alloy exhibits good oxidation resistance at 700 ℃. However, when the temperature is higher than 900 ℃, the oxidation resistance becomes poor. The XRD results reveal that the oxide product consists of a mixture of TiO2 and Al2O3. Serious crack and spallation of oxide scale occur during cooling procedure after being exposed at 1 000 ℃ in air for 16 h. According to the analysis of SEM/EDS and XRD, it is concluded that the Al2O3 oxide forms at the initially transient oxidation stage and most of it keeps in the outer oxide layer during the subsequent oxidation procedure.展开更多
Intermetallics and phase transformations of the zirconium-based alloy, Zr-1.0Sn-0.3Nb-0.3Fe-0.1Cr, were investigated by conventional X-ray diffraction (XRD), differential scanning calorimetry (DSC), and dilation m...Intermetallics and phase transformations of the zirconium-based alloy, Zr-1.0Sn-0.3Nb-0.3Fe-0.1Cr, were investigated by conventional X-ray diffraction (XRD), differential scanning calorimetry (DSC), and dilation measurement. Three types of precipitates, namely, (ZrNb)2Fe, Zr(CrFe)2, and Zr3Fe, were detected by XRD. The cubic Ti2Ni-type (ZrNb)2Fe was found to be the main precipitate in the alloy, and it was proposed to dissolve at 861℃, whereas Zr3Fe dissolved at 780℃ and Zr(CrFe)2 at 814℃. No precipitates were observed at a temperature higher than 900℃. The transformation-start temperature of α-Zr → β-Zr was reconfirmed to be 780℃, and the end temperature of α-Zr →βZr was determined to be 955℃. The dilation result also revealed that the martensitic transformation-start temperature, Ms, and the finish temperature, Mf, of this alloy were 741℃ and 645℃, respectively.展开更多
The vacuum brazing of TiAl based alloy with 40Cr steel was investigated using Ag-Cu-Ti filler metal. The experimental results show that the Ag, Cu, Ti atoms in the filler metal and the base metal inter-diffuse toward ...The vacuum brazing of TiAl based alloy with 40Cr steel was investigated using Ag-Cu-Ti filler metal. The experimental results show that the Ag, Cu, Ti atoms in the filler metal and the base metal inter-diffuse toward each other during brazing and react at the interface to form an inter-metallic AlCu 2Ti compound which joins two parts to produce a brazing joint with higher strength.展开更多
TiAl based alloys are rapidly being developed for elevated temperature applications, due to their high strength, light mass and good oxidation resistance. However, the disadvantages of TiAl based alloys are low ductil...TiAl based alloys are rapidly being developed for elevated temperature applications, due to their high strength, light mass and good oxidation resistance. However, the disadvantages of TiAl based alloys are low ductility and toughness at room temperature, and poor workability. Grain refinement is one of the most effective ways for improving room temperature tensile properties and hot workability of ordered TiAl based alloys. At present, the majority of research works have focused on alloy modifications through compositional controls, alloying additions, thermo mechanical processing and production techniques. This article discusses the research status of TiAl based alloys in the areas of microstructure, alloying, processing and applications.展开更多
The submerged arc brazing method was used to connect the tin-based babbit alloy with the steel matrix.The microstructure of the submerged arc brazed Babbitt interface layer on the surface of Q235 B steel was analyzed ...The submerged arc brazing method was used to connect the tin-based babbit alloy with the steel matrix.The microstructure of the submerged arc brazed Babbitt interface layer on the surface of Q235 B steel was analyzed by OM,SEM and EDS and the hardness properties of the joint interface layer were tested by MH-5 microhardness tester.the result of research shows that a layer of canine-shaped intermetallic compound with uneven thickness is formed at the interface,and the thickness is 10-20 μm.The interface layer includes two kinds of compound layers,namely the Fe Sn layer near the side of the steel substrate and FeSn layer near the side of the babbit.During the interfacial reaction process,Fe atoms in the steel matrix dissolve into the liquid babbit alloy and form a certain concentration gradient at the interface.The farther from the interface,the lower the Fe atom concentration.The growth of Gibbs free energy of Fe Sn is lower when the temperature is above 780.15 K,and the temperature during the welding process is much higher than 780.15 K,moreover the precipitation temperature of Fe Sn is higher.Therefore,in the subsequent cooling process,Fe Sn is first precipitated from the interface near the side of steel matrix and then FeSn is precipitated from the interface near the side of babbit alloy.Microhardness test showed that the intermetallic compound at the interface layer significantly improved the hardness properties.展开更多
Mg-based hydrogen storage materials are considered to be one of the most promising solid-state hydrogen storage materials due to their large hydrogen storage capacity and low cost. However, slow hydrogen absorption/de...Mg-based hydrogen storage materials are considered to be one of the most promising solid-state hydrogen storage materials due to their large hydrogen storage capacity and low cost. However, slow hydrogen absorption/desorption rate and excessive hydrogen absorption/desorption temperature limit the application of Mg-based hydrogen storage materials.The present paper reviews the advances in the research of Mg-based hydrogen storage film in recent years, including the advantage of the film, the function theory of fabricating method and its functional theory, and the influencing factors in the technological process. The research status worldwide is introduced in detail. By comparing pure Mg, Pd-caped Mg, nonpalladium capped Mg, and Mg alloy hydrogen storage films, an ideal tendency for producing Mg-based film is pointed out,for example, looking for a cheap metal element to replace the high-priced Pd, compositing Mg film with other hydrogen storage alloy of catalytic elements, and so on.展开更多
The growth of Au-Sn intermetallic compounds(IMCs) is a major concern to the reliability of solder joints in microelectronic,optoelectronic and micro-electronic-mechanical system(MEMS) which has a layer of Au metalliza...The growth of Au-Sn intermetallic compounds(IMCs) is a major concern to the reliability of solder joints in microelectronic,optoelectronic and micro-electronic-mechanical system(MEMS) which has a layer of Au metallization on the surface of components or leads.This paper presented the growth behavior of Au-Sn IMCs at interfaces of Au metallization and Sn-based solder joints with the addition of Cu alloying element during aging process,and growth coefficients of the Au-Sn IMCs were calculated.Results on the interfacial reaction between Sn-xCu solders and Au metallization during aging process show that three layers of Au-Sn IMCs including AuSn,AuSn2 and AuSn4 formed at the interface region.The thickness of each Au-Sn IMC layer vs square root of aging time follows linear relationship.Calculation of the IMC growth coefficients shows that the diffusion coefficients decrease with the addition Cu elements,which indicates that Cu addition suppresses the growth of Au-Sn IMCs layer.展开更多
In order to investigate the yielding behavior of the newly developed Ni 3 Al-based intermetallic alloy IC10, yield stresses have been measured in tension and compression with different orientations. The specimens were...In order to investigate the yielding behavior of the newly developed Ni 3 Al-based intermetallic alloy IC10, yield stresses have been measured in tension and compression with different orientations. The specimens were cut from a sheet with different angles inclined from the solidification direction. The inclined angles were taken to be 0 , 22.5 , 45 , 67.5 and 90 . All experiments were conducted at room temperature except for orientation 0 , whose deformation temperatures ranged from 298 to 1273 K. Experimental results show that the yield strength of alloy IC10 has the anomalous behavior which has been observed for other Ll 2 -long-range ordered intermetallic alloys, but it is less pronounced. The abnormalities show the following characteristics: (i) the yield strength increases as the temperature is raised below the peak temperature, (ii) yield strength anisotropy, (iii) tension/compression asymmetry. Compared to Ni 3 Al single crystals, the polycrystalline exhibits some different yielding behaviors which may be due to the high volume fraction of c phase.展开更多
TiAlNb based intermetallic alloys,a potential competitor for next-generation super alloys,are susceptible to high-temperature embrittlement due to nucleation of a metastable single B2 phase in the fusion zone(FZ)durin...TiAlNb based intermetallic alloys,a potential competitor for next-generation super alloys,are susceptible to high-temperature embrittlement due to nucleation of a metastable single B2 phase in the fusion zone(FZ)during laser beam welding(LBW).In this study,a high entropy alloy(HEA),Ti-Hf-Zr-Cu-Ni,was self-developed and introduced as an interlayer into laser beam welded joint(LBWJ)of Ti-22 Al-27 Nb to analyze its impact on the evolution of microstructure in the weld zone(WZ)and subsequently on joint performance.Microstructural examination was carried out through electron probe micro analysis(EPMA),electron backscattered diffraction(EBSD)analysis,high-resolution scanning transmission electron microscopy(HRSTEM)comprising bright field(BF),selective area electron diffraction(SAED)and high angle annular dark-field(HAADF)imaging.Addition of the HEA into FZ of LBWJ triggered heterogenous nucleation during solidification,resultantly,fine-grained B2 with a greater proportion of high angle grain boundaries(HAGBs)was developed.FZ of Ti-22 Al-27 Nb LBWJ,prepared with an interlayer of HEA,was composed of planar,cellular,columnar and equiaxed dendritic grains;a solidification mode which was different from that observed in LBWJ prepared without adulteration of the HEA.The impact of heterogenous nucleation during epitaxial solidification on mechanical properties was established through micro vickers hardness mapping and tensile test,conducted at room temperature.The average hardness,343.5 HV,in the FZ of LBWJ prepared with an interlayer of HEA,was compatible with that of base material(BM),345 HV.The ultimate tensile strength(UTS),1062 MPa,and percentage elongation,11.2%,of the HEA tempered LBWJ were found in close approximation with that of BM,1060 MPa and 13.4%,respectively.A ductile mode of failure was observed during tensile test of the Ti-Hf-Zr-Cu-Ni supplemented LBWJ of Ti-22 Al-27 Nb,while quasi-cleavage mode of fracture was apparent in the joint of Ti-22 Al-27 Nb welded without addition of the HEA.展开更多
The microstructural evolution of Ti-45 at.%Al alloy during directional solidification was simulated by applying a solute diffusion controlled solidification model.The obtained results have shown that under high therma...The microstructural evolution of Ti-45 at.%Al alloy during directional solidification was simulated by applying a solute diffusion controlled solidification model.The obtained results have shown that under high thermal gradients the stable primary spacing can be adjusted via branching or competitive growth.For dendritic structures formed under a high thermal gradient,the secondary dendrite arms are developed not very well in many cases due to the branching mechanism under a constrained dendritic growth condition.Furthermore,it has been observed that,with increasing pulling velocity,there exists a cell/dendrite transition region consisting of cells and dendrites,which varies with the thermal gradient in a contradicting way,i.e.increase of the thermal gradient leading to the decrease of the range of the transition region.The simulations agree reasonably well with experiment results.展开更多
A series of Ti_(56.25-x)Zr_(x)Ni_(25)Cu1_(8.75)(x=0–25,at.%) filler metals were designed based on a cluster-plus-glue-atom model to vacuum braze TiAl intermetallic to K4169 alloy. The impact of Zr content on the inte...A series of Ti_(56.25-x)Zr_(x)Ni_(25)Cu1_(8.75)(x=0–25,at.%) filler metals were designed based on a cluster-plus-glue-atom model to vacuum braze TiAl intermetallic to K4169 alloy. The impact of Zr content on the interfacial microstructure and shear strength of joints was examined. And the relationship between the interfacial lattice structure and the fracture behavior of the joint was investigated. The findings reveal a sectionalized characteristic with three reaction zones (Zone I, Zone II and Zone III) in the microstructure of the TiAl intermetallic to K4169 alloy joint. As the Zr content in filler metals increased, the diffusion of Ti transitioned from long-distance to short-distance in Zone I, changing the initial composition from TiNi_(3) /TiNi/NiNb/(Cr, Fe, Ni)SS to NiCrFe/(Cr, Fe, Ni)SS /TiNi. In Zone II, the initial composition altered from TiNi_(3) /TiNi to TiNi/Ti_(2) Ni/TiNi_(3) /TiCu/TiNi. The interface between Zones II and III altered from a non-coherent and semi-coherent interface of TiNi/TiAl/Ti_(3) Al with significant residual stress to a semi-coherent interface of TiNi/TiNi_(3) /TiAl_(2) /Ti_(3) Al with a gradient distribution. The shear strength of the joint initially decreased and then increased. When the Zr content of filler metal was 25 at.%, the shear strength of the joint reached 288 MPa. The crack initiation position changed from non-coherent TiNi/TiAl interface with high angle grain boundaries (HAGBs) and lattice mismatch of 65.86 at.% to a semi-coherent Ti3 Al/TiAl2 interface with a lattice mismatch of 20.07 at.% when the Zr content increased. The brittle fracture was present on the fracture surfaces of all brazed joints.展开更多
基金Project (2010DFA51650) supported by the Ministry of Science and Technology of China
文摘Multilayered Ti-Al based intermetallic sheets were fabricated by sintering alternately layered titanium and aluminum foils.The microstructure and phase formation of the obtained sheets under different sintering conditions were evaluated by various techniques.The results reveal that when the sintering temperature is above the melting point of aluminum,the self-propagating high-temperature synthesis reaction occurs between Ti and Al,and forms various phases of Ti-based solid solutions including α-Ti Ti3Al,TiAl,TiAl2 and α-Ti including TiAl3,etc.When the sintering time increased,Ti-based solid solution,TiAl2 and TiAl3 disappeared gradually,and the sheet containing Ti3Al and TiAl phases in a multilayered structure formed finally.A lot of voids were also observed in the sintered structures,which were caused by the melting Al,Kirkendall effect and the difference of molar volumes between reactants and products.The voids were eliminated and a dense sample was obtained by the following hot press.
文摘The microstructural stability of lamellar TiAl base alloys at high temperatures was studied by conventional and high resolution transmission electron microscopy. The influence of substructures on the thermal stability of lamellar structure was emphasized. These substructures produced by thermal mechanical treatments include the interfacial dislocations and ledges, the subgrain boundaries, the impinged T(Q) twins and misorientated lamellar interfaces. The microstructural change of three kinds of lamellar TiAl base alloys containing differents type and densities of substructures were compared during exposure at 800~1 000 ℃. It was found that the existence of such substructures could accelerate the degeneration of lamellar structure, leading to the rapid necking and break up of α 2 plates, the coarsening of γ plates, and the formation of new γ grains. As a result, the lamellar structure with substructures started to degenerate after thermal exposure at 800℃ for 4.5 h. While only slight coarsening was observed at the colony boundaries in the lamellar structure without substructures even after exposure at 900 ℃ for 7 d.
基金Project(50771099) supported by the National Natural Science Foundation of China
文摘The isothermal oxidation behavior of a Ti3Al-based alloy (Ti-24Al-14Nb-3V-0.5Mo-0.3Si, molar fraction, %) at 700-1 000 ℃ in air was investigated. The oxidation kinetics of tested alloy approximately obeys the parabolic law, which shows that the oxidation process is dominated by the diffusion of ions. The oxidation diffusion activity energy is 241.32 kJ/mol. The tested alloy exhibits good oxidation resistance at 700 ℃. However, when the temperature is higher than 900 ℃, the oxidation resistance becomes poor. The XRD results reveal that the oxide product consists of a mixture of TiO2 and Al2O3. Serious crack and spallation of oxide scale occur during cooling procedure after being exposed at 1 000 ℃ in air for 16 h. According to the analysis of SEM/EDS and XRD, it is concluded that the Al2O3 oxide forms at the initially transient oxidation stage and most of it keeps in the outer oxide layer during the subsequent oxidation procedure.
基金the Foundation of Key Laboratory of National Defense Technologythe National Key Laboratory for Nuclear Fuel and Materials (No. 00JS85.9.1GX0101)the Science Foundation of Guangxi Province, China (Nos. 0448022 and 0728060)
文摘Intermetallics and phase transformations of the zirconium-based alloy, Zr-1.0Sn-0.3Nb-0.3Fe-0.1Cr, were investigated by conventional X-ray diffraction (XRD), differential scanning calorimetry (DSC), and dilation measurement. Three types of precipitates, namely, (ZrNb)2Fe, Zr(CrFe)2, and Zr3Fe, were detected by XRD. The cubic Ti2Ni-type (ZrNb)2Fe was found to be the main precipitate in the alloy, and it was proposed to dissolve at 861℃, whereas Zr3Fe dissolved at 780℃ and Zr(CrFe)2 at 814℃. No precipitates were observed at a temperature higher than 900℃. The transformation-start temperature of α-Zr → β-Zr was reconfirmed to be 780℃, and the end temperature of α-Zr →βZr was determined to be 955℃. The dilation result also revealed that the martensitic transformation-start temperature, Ms, and the finish temperature, Mf, of this alloy were 741℃ and 645℃, respectively.
文摘The vacuum brazing of TiAl based alloy with 40Cr steel was investigated using Ag-Cu-Ti filler metal. The experimental results show that the Ag, Cu, Ti atoms in the filler metal and the base metal inter-diffuse toward each other during brazing and react at the interface to form an inter-metallic AlCu 2Ti compound which joins two parts to produce a brazing joint with higher strength.
文摘TiAl based alloys are rapidly being developed for elevated temperature applications, due to their high strength, light mass and good oxidation resistance. However, the disadvantages of TiAl based alloys are low ductility and toughness at room temperature, and poor workability. Grain refinement is one of the most effective ways for improving room temperature tensile properties and hot workability of ordered TiAl based alloys. At present, the majority of research works have focused on alloy modifications through compositional controls, alloying additions, thermo mechanical processing and production techniques. This article discusses the research status of TiAl based alloys in the areas of microstructure, alloying, processing and applications.
基金supported by the University Natural Science Research Project of Jiangsu Province(Grant No.15KJA460006)
文摘The submerged arc brazing method was used to connect the tin-based babbit alloy with the steel matrix.The microstructure of the submerged arc brazed Babbitt interface layer on the surface of Q235 B steel was analyzed by OM,SEM and EDS and the hardness properties of the joint interface layer were tested by MH-5 microhardness tester.the result of research shows that a layer of canine-shaped intermetallic compound with uneven thickness is formed at the interface,and the thickness is 10-20 μm.The interface layer includes two kinds of compound layers,namely the Fe Sn layer near the side of the steel substrate and FeSn layer near the side of the babbit.During the interfacial reaction process,Fe atoms in the steel matrix dissolve into the liquid babbit alloy and form a certain concentration gradient at the interface.The farther from the interface,the lower the Fe atom concentration.The growth of Gibbs free energy of Fe Sn is lower when the temperature is above 780.15 K,and the temperature during the welding process is much higher than 780.15 K,moreover the precipitation temperature of Fe Sn is higher.Therefore,in the subsequent cooling process,Fe Sn is first precipitated from the interface near the side of steel matrix and then FeSn is precipitated from the interface near the side of babbit alloy.Microhardness test showed that the intermetallic compound at the interface layer significantly improved the hardness properties.
基金Project supported by the Competitiveness Enhancement Program of National Research Tomsk Polytechnic University(Grant No.VIU-OEF-66/2019)
文摘Mg-based hydrogen storage materials are considered to be one of the most promising solid-state hydrogen storage materials due to their large hydrogen storage capacity and low cost. However, slow hydrogen absorption/desorption rate and excessive hydrogen absorption/desorption temperature limit the application of Mg-based hydrogen storage materials.The present paper reviews the advances in the research of Mg-based hydrogen storage film in recent years, including the advantage of the film, the function theory of fabricating method and its functional theory, and the influencing factors in the technological process. The research status worldwide is introduced in detail. By comparing pure Mg, Pd-caped Mg, nonpalladium capped Mg, and Mg alloy hydrogen storage films, an ideal tendency for producing Mg-based film is pointed out,for example, looking for a cheap metal element to replace the high-priced Pd, compositing Mg film with other hydrogen storage alloy of catalytic elements, and so on.
基金This work was financially supported by the National Natural Science Foundation of China ( No 50675047/ E052105)Joint Project between Samsung Electronics Co Ltd( Korea) and Harbin Institute of Technology( HIT)
文摘The growth of Au-Sn intermetallic compounds(IMCs) is a major concern to the reliability of solder joints in microelectronic,optoelectronic and micro-electronic-mechanical system(MEMS) which has a layer of Au metallization on the surface of components or leads.This paper presented the growth behavior of Au-Sn IMCs at interfaces of Au metallization and Sn-based solder joints with the addition of Cu alloying element during aging process,and growth coefficients of the Au-Sn IMCs were calculated.Results on the interfacial reaction between Sn-xCu solders and Au metallization during aging process show that three layers of Au-Sn IMCs including AuSn,AuSn2 and AuSn4 formed at the interface region.The thickness of each Au-Sn IMC layer vs square root of aging time follows linear relationship.Calculation of the IMC growth coefficients shows that the diffusion coefficients decrease with the addition Cu elements,which indicates that Cu addition suppresses the growth of Au-Sn IMCs layer.
文摘In order to investigate the yielding behavior of the newly developed Ni 3 Al-based intermetallic alloy IC10, yield stresses have been measured in tension and compression with different orientations. The specimens were cut from a sheet with different angles inclined from the solidification direction. The inclined angles were taken to be 0 , 22.5 , 45 , 67.5 and 90 . All experiments were conducted at room temperature except for orientation 0 , whose deformation temperatures ranged from 298 to 1273 K. Experimental results show that the yield strength of alloy IC10 has the anomalous behavior which has been observed for other Ll 2 -long-range ordered intermetallic alloys, but it is less pronounced. The abnormalities show the following characteristics: (i) the yield strength increases as the temperature is raised below the peak temperature, (ii) yield strength anisotropy, (iii) tension/compression asymmetry. Compared to Ni 3 Al single crystals, the polycrystalline exhibits some different yielding behaviors which may be due to the high volume fraction of c phase.
基金funded by the National Natural Science Foundations of China(Nos.52075449,51975480 and U1737205)the Aeronautical Science Foundation of China(No.20185470007)。
文摘TiAlNb based intermetallic alloys,a potential competitor for next-generation super alloys,are susceptible to high-temperature embrittlement due to nucleation of a metastable single B2 phase in the fusion zone(FZ)during laser beam welding(LBW).In this study,a high entropy alloy(HEA),Ti-Hf-Zr-Cu-Ni,was self-developed and introduced as an interlayer into laser beam welded joint(LBWJ)of Ti-22 Al-27 Nb to analyze its impact on the evolution of microstructure in the weld zone(WZ)and subsequently on joint performance.Microstructural examination was carried out through electron probe micro analysis(EPMA),electron backscattered diffraction(EBSD)analysis,high-resolution scanning transmission electron microscopy(HRSTEM)comprising bright field(BF),selective area electron diffraction(SAED)and high angle annular dark-field(HAADF)imaging.Addition of the HEA into FZ of LBWJ triggered heterogenous nucleation during solidification,resultantly,fine-grained B2 with a greater proportion of high angle grain boundaries(HAGBs)was developed.FZ of Ti-22 Al-27 Nb LBWJ,prepared with an interlayer of HEA,was composed of planar,cellular,columnar and equiaxed dendritic grains;a solidification mode which was different from that observed in LBWJ prepared without adulteration of the HEA.The impact of heterogenous nucleation during epitaxial solidification on mechanical properties was established through micro vickers hardness mapping and tensile test,conducted at room temperature.The average hardness,343.5 HV,in the FZ of LBWJ prepared with an interlayer of HEA,was compatible with that of base material(BM),345 HV.The ultimate tensile strength(UTS),1062 MPa,and percentage elongation,11.2%,of the HEA tempered LBWJ were found in close approximation with that of BM,1060 MPa and 13.4%,respectively.A ductile mode of failure was observed during tensile test of the Ti-Hf-Zr-Cu-Ni supplemented LBWJ of Ti-22 Al-27 Nb,while quasi-cleavage mode of fracture was apparent in the joint of Ti-22 Al-27 Nb welded without addition of the HEA.
文摘The microstructural evolution of Ti-45 at.%Al alloy during directional solidification was simulated by applying a solute diffusion controlled solidification model.The obtained results have shown that under high thermal gradients the stable primary spacing can be adjusted via branching or competitive growth.For dendritic structures formed under a high thermal gradient,the secondary dendrite arms are developed not very well in many cases due to the branching mechanism under a constrained dendritic growth condition.Furthermore,it has been observed that,with increasing pulling velocity,there exists a cell/dendrite transition region consisting of cells and dendrites,which varies with the thermal gradient in a contradicting way,i.e.increase of the thermal gradient leading to the decrease of the range of the transition region.The simulations agree reasonably well with experiment results.
基金supported by the National Natural Science Foun-dation of China(Nos.52275314 and 52075074)the Collaborative Innovation Center of Major Machine Manufacturing in Liaoning.
文摘A series of Ti_(56.25-x)Zr_(x)Ni_(25)Cu1_(8.75)(x=0–25,at.%) filler metals were designed based on a cluster-plus-glue-atom model to vacuum braze TiAl intermetallic to K4169 alloy. The impact of Zr content on the interfacial microstructure and shear strength of joints was examined. And the relationship between the interfacial lattice structure and the fracture behavior of the joint was investigated. The findings reveal a sectionalized characteristic with three reaction zones (Zone I, Zone II and Zone III) in the microstructure of the TiAl intermetallic to K4169 alloy joint. As the Zr content in filler metals increased, the diffusion of Ti transitioned from long-distance to short-distance in Zone I, changing the initial composition from TiNi_(3) /TiNi/NiNb/(Cr, Fe, Ni)SS to NiCrFe/(Cr, Fe, Ni)SS /TiNi. In Zone II, the initial composition altered from TiNi_(3) /TiNi to TiNi/Ti_(2) Ni/TiNi_(3) /TiCu/TiNi. The interface between Zones II and III altered from a non-coherent and semi-coherent interface of TiNi/TiAl/Ti_(3) Al with significant residual stress to a semi-coherent interface of TiNi/TiNi_(3) /TiAl_(2) /Ti_(3) Al with a gradient distribution. The shear strength of the joint initially decreased and then increased. When the Zr content of filler metal was 25 at.%, the shear strength of the joint reached 288 MPa. The crack initiation position changed from non-coherent TiNi/TiAl interface with high angle grain boundaries (HAGBs) and lattice mismatch of 65.86 at.% to a semi-coherent Ti3 Al/TiAl2 interface with a lattice mismatch of 20.07 at.% when the Zr content increased. The brittle fracture was present on the fracture surfaces of all brazed joints.