期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Porous TiFe_(2) intermetallic compound fabricated via elemental powder reactive synthesis
1
作者 Qian Zhao Zhenli He +3 位作者 Yuehui He Yue Qiu Zhonghe Wang Yao Jiang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期764-772,共9页
Porous intermetallics show potential in the field of filtration and separation as well as in the field of catalysis.Herein,porous Ti Fe2intermetallics were fabricated by the reactive synthesis of elemental powders.The... Porous intermetallics show potential in the field of filtration and separation as well as in the field of catalysis.Herein,porous Ti Fe2intermetallics were fabricated by the reactive synthesis of elemental powders.The phase transformation and pore formation of porous TiFe2intermetallics were investigated,and its corrosion behavior and hydrogen evolution reaction(HER)performance in alkali solution were studied.Porous TiFe2intermetallics with porosity in the range of 34.4%-56.4%were synthesized by the diffusion reaction of Ti and Fe elements,and the pore formation of porous TiFe2intermetallic compound is the result of a combination of the bridging effect and the Kirkendall effect.The porous TiFe2samples exhibit better corrosion resistance compared with porous 316L stainless steel,which is related to the formation of uniform nanosheets on the surface that hinder further corrosion,and porous TiFe2electrode shows the overpotential of 220.6 and 295.6 mV at 10 and 100 mA·cm-2,suggesting a good catalytic performance.The synthesized porous Fe-based intermetallic has a controllable pore structure as well as excellent corrosion resistance,showing its potential in the field of filtration and separation. 展开更多
关键词 TiFe2 intermetallic compound porous materials reactive synthesis corrosion behavior hydrogen evolution reaction
下载PDF
Recent progress in porous intermetallics:Synthesis mechanism,pore structure,and material properties 被引量:2
2
作者 Yao Jiang Yuehui He Haiyan Gao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第15期89-104,共16页
Intermetallic compounds have the characteristics of long-range ordered structure and combination of metallic and covalent bonds,showing intrinsic brittleness and outstanding performance stability.The synthesis mechani... Intermetallic compounds have the characteristics of long-range ordered structure and combination of metallic and covalent bonds,showing intrinsic brittleness and outstanding performance stability.The synthesis mechanism,pore structure characterization and material properties of powder metallurgy porous intermetallics are reviewed in this paper.Compared with traditional porous materials,porous intermetallics have good thermal impact resistance,machinability,thermal and electrical conductivity similar to metals,as well as good chemical corrosion resistance,rigidity and high-temperature property similar to ceramics.The mechanisms of preparation and pore formation of porous intermetallics mainly include four aspects:(1)the physical process based on the interstitial space between the initial particles and its evolution in the subsequent procedures;(2)the chemical combustion process based on the violent reaction between the initial powder components;(3)the reaction kinetics process based on the difference between the diffusion rates of elements;(4)the phase transition process based on the difference between the phase densities.The characterization parameters to the pore structure description for porous intermetallics include mainly overall porosity,open porosity,permeability,maximum pore size,pore size distribution and tortuosity factor.In terms of microstructure characterization of porous intermetallics,three-dimensional pore morphology scanning technology has the potential to reveal the internal characteristics of pore structures.The research on material properties of porous intermetallics mainly focuses on electrochemical catalytic activity,generalized oxidation resistivity at high temperature,resistance against chemical corrosion and mechanical properties,which have obvious advantages over traditional porous materials.In the field of the development of porous intermetallics,it is expected to expand their applications by further reducing the pore size to the nanoscale level to improve the filtration accuracy or increase the specific surface area,as well as introducing the high entropy design on the composition to improve the brittleness and enhance their material performance. 展开更多
关键词 intermetallic compound porous material Preparation mechanism Pore structure material property
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部