By phenomenological analysis of warm compaction, it is found that, compared with the contribution of particle plastical deformation to densification of powder compact,the particle rearrangement is a dominant densifica...By phenomenological analysis of warm compaction, it is found that, compared with the contribution of particle plastical deformation to densification of powder compact,the particle rearrangement is a dominant densification mechanism for powder warm compaction, and the plastical deformation of particles plays an important role in offering accommodating deformation for particle rearrangement and densifying powder compact at the final stage of pressing.In order to attain density gain as high as possible during warm compaction, six rules for designing warm compacting powder mixtures were proposed in detail.展开更多
Selective laser melting(SLM)technology is the prevailing method of manufacturing components with complex geometries.However,the cost of the additive manufacturing(AM)fine powder is relatively high,which significantly ...Selective laser melting(SLM)technology is the prevailing method of manufacturing components with complex geometries.However,the cost of the additive manufacturing(AM)fine powder is relatively high,which significantly limits the development of the SLM.In this study,the 316L fine powder and coarse powder with a mass ratio of 80:20,70:30 and 60:40 were mixed using a ball milling and the samples with a relative density greater than 97%were prepared by SLM.The results show that the intricate temperature gradients and surface tension gradients in SLM will produce Marangoni flow,forming a typical molten pool morphology,cellular and strip subgrain structures.And as the proportion of coarse powder increases,the scanning track morphology changes from smooth to undulating;the morphology of the molten pool and subgrain structure are weakened.Meanwhile,the unmelted particles appear on the surface of the SLM sample.On the premise of an introducing appropriate amount of large particle size powder(20%),the SLM samples still have good mechanical properties(662 MPa,47%).展开更多
The ability to predict tableting properties of a powder mixture from individual components is of both fundamental and practical importance to the efficient formulation development of tablet products. A common tabletin...The ability to predict tableting properties of a powder mixture from individual components is of both fundamental and practical importance to the efficient formulation development of tablet products. A common tableting classification system(TCS) of binary powder mixtures facilitates the systematic development of new knowledge in this direction. Based on the dependence of tablet tensile strength on weight fraction in a binary mixture,three main types of tableting behavior are identified. Each type is further divided to arrive at a total of 15 sub-classes. The proposed classification system lays a framework for a better understanding of powder interactions during compaction. Potential applications and limitations of this classification system are discussed.展开更多
After milling in a high energy ball miller for various times, the synthesis reaction process of the Al Ti C powder mixture were investigated by difference thermal analysis (DTA) and X ray diffractometry (XRD). Accordi...After milling in a high energy ball miller for various times, the synthesis reaction process of the Al Ti C powder mixture were investigated by difference thermal analysis (DTA) and X ray diffractometry (XRD). According to the patterns of reaction peaks on the DTA curves, the activation energy of each reaction was calculated. The experimental results of DTA show that the synthesis reaction of Al Ti C powder mixture can be enhanced after high energy milling. The longer the milling time, the lower the reaction temperature. The synthesis reaction of TiC is transformed from Ti+C→TiC to Al 3Ti+C→TiC+3Al with long period milling. Meanwhile, the activation energy of the reaction reduces with increasing milling time. The effect of milling time on reduced activation energy for low temperature region is more significant than that for high temperature region.展开更多
It was shown by TEM and X-ray analysis that there are four types of grains of the main Ni3Al phase in the structure of the intermetallic obtained by the self-propagation high temperature method (SHS). Every type of gr...It was shown by TEM and X-ray analysis that there are four types of grains of the main Ni3Al phase in the structure of the intermetallic obtained by the self-propagation high temperature method (SHS). Every type of grains has its own domain and dislocation structure. There are mono- and polydomains with and without dislocations. The grains of the main phase of monoand polydomains without dislocations and polydomains with dislocations were formed by diffusion in the solid phase. In these conditions NiAl3 phase is located on the grain boundary of the main phase. The Ni2Al3 phase is located at the triple joints of the main phase.展开更多
The relationship between Compton scattered photon counts per unit mass and the content of a component in a binary powder mixture is deduced based on the Compton scattering theory.This relationship can be regarded line...The relationship between Compton scattered photon counts per unit mass and the content of a component in a binary powder mixture is deduced based on the Compton scattering theory.This relationship can be regarded linear after some approximations.The scattered photon counts per unit mass increases faster with the content when the difference of the atomic numbers of the two components in the binary powder mixture is larger.The relationship was verified with Compton scattering experiments on a series of Ni-Cu and Fe-C binary powder mixtures.The method of using this linear dependene of scattered photon counts on the content of a binary powder mixture to ascertain the component content in a binary mixture was introduced.展开更多
The Ni_3B phase was formed when boron (0.5 at. pct B) was added to the intermetallic of sto- ichiometric and off-stoichiometric (Ni-24 at. pct Al) compounds. In the alloy of stoichiometric composition the particles o...The Ni_3B phase was formed when boron (0.5 at. pct B) was added to the intermetallic of sto- ichiometric and off-stoichiometric (Ni-24 at. pct Al) compounds. In the alloy of stoichiometric composition the particles of Ni_3B phase has the size around 0.1μm and is located on the grain boundary of the main phase. The decreasing of concentrations of Al in the ofF-stoichiometric alloy leads to increase in the degree of the long-range order parameter, increasing the concen- trations of boron in the solid solution and decreasing its localization on the grain boundary. Microalloying of boron leads to increasing in the fraction of grain monodomains with disloca- tions up to 0.7 in the alloy of the off-stoichiometric composition and up to 1 in the alloy of the stoichiometric composition. It was established the correlation between the degree of the concentration inhomogeneity, average density of the dislocations and the average long range-order parameter.展开更多
[ Objective] To explore the possibility of treating livestock manure with white-rot fungi. [Method] The wood powder-chicken manure mixture was respectively composted by three kinds of white-rot fungi, the weight of li...[ Objective] To explore the possibility of treating livestock manure with white-rot fungi. [Method] The wood powder-chicken manure mixture was respectively composted by three kinds of white-rot fungi, the weight of lignin, cellulose, protein, fat, ash and crude polysaccharide as well as the mycelial growth was determined during this process. [ Result] The mixture was better composted with white-rot fungi than the control. The best effect was achieved in P. ostreatus composting group. In this group, the rate of weight reduction, lignin degradation and cellulose degradation were respectively 15.68% (6.79 times as great as that of the control group), 39.92% (6.54 times as great as that of the control group) and 32.26% (2.77 times as great as that of the control group). The weight of protein and fat were increased by 31.68% and 146.58%, respectively. The content of crude polysaccharide was 2.43%. No crude polysaccharide was detected, and the weight of protein and fat decreased by 21.96% and 70.99%, respectively. [ Conclusion] It is feasible to compost livestock and poultry manure with white-rot fungi.展开更多
In order to investigate the microstructural evolution during self-propagating high-temperature synthesis (SHS) of Ti-Al powder mixture with an atomic ratio of Ti: Al=1:1, a combustion front quenching method (CFQM...In order to investigate the microstructural evolution during self-propagating high-temperature synthesis (SHS) of Ti-Al powder mixture with an atomic ratio of Ti: Al=1:1, a combustion front quenching method (CFQM) was used for extinguishing the propagating combustion wave, and the microstructures on the quenched sample were observed with scanning electron microscope (SEM) and analyzed with energy dispersive spectrometry (EDS). In addition, the combustion temperature of the reaction was measured, and the phase constituent of the synthesized product was inspected by X-ray diffraction (XRD). The results showed that the combustion reaction started from melting of the Al particles, and the melting resulted in dissolving of the Ti particles and forming of Al3Ti grains. As the Al liquid was depleted, the combustion reaction proceeded through solid-state diffusion between the solid Al3Ti and the solid Ti. This led to the forming of TiAl and Ti3Al diffusing layers. In addition, the combustion reaction is incomplete besides TiAl, there are a large amount of Ti3Al and TiAl3 and a small amount of Ti in the final product. This incompleteness chiefly results from the using of coarser Ti powder.展开更多
文摘By phenomenological analysis of warm compaction, it is found that, compared with the contribution of particle plastical deformation to densification of powder compact,the particle rearrangement is a dominant densification mechanism for powder warm compaction, and the plastical deformation of particles plays an important role in offering accommodating deformation for particle rearrangement and densifying powder compact at the final stage of pressing.In order to attain density gain as high as possible during warm compaction, six rules for designing warm compacting powder mixtures were proposed in detail.
基金Projects(51671152,51304153,51504191,51874225)supported by the National Natural Science Foundation of ChinaProject(14JK512)supported by the Natural Science Foundation of Shaanxi Educational Committee,China+1 种基金Project(18JC019)supported by Shaanxi Provincial Department of Education Industrialization Project,ChinaProject(14JK1512)supported by Shaanxi Provincial Department of Education Natural Science Special Project,China
文摘Selective laser melting(SLM)technology is the prevailing method of manufacturing components with complex geometries.However,the cost of the additive manufacturing(AM)fine powder is relatively high,which significantly limits the development of the SLM.In this study,the 316L fine powder and coarse powder with a mass ratio of 80:20,70:30 and 60:40 were mixed using a ball milling and the samples with a relative density greater than 97%were prepared by SLM.The results show that the intricate temperature gradients and surface tension gradients in SLM will produce Marangoni flow,forming a typical molten pool morphology,cellular and strip subgrain structures.And as the proportion of coarse powder increases,the scanning track morphology changes from smooth to undulating;the morphology of the molten pool and subgrain structure are weakened.Meanwhile,the unmelted particles appear on the surface of the SLM sample.On the premise of an introducing appropriate amount of large particle size powder(20%),the SLM samples still have good mechanical properties(662 MPa,47%).
文摘The ability to predict tableting properties of a powder mixture from individual components is of both fundamental and practical importance to the efficient formulation development of tablet products. A common tableting classification system(TCS) of binary powder mixtures facilitates the systematic development of new knowledge in this direction. Based on the dependence of tablet tensile strength on weight fraction in a binary mixture,three main types of tableting behavior are identified. Each type is further divided to arrive at a total of 15 sub-classes. The proposed classification system lays a framework for a better understanding of powder interactions during compaction. Potential applications and limitations of this classification system are discussed.
文摘After milling in a high energy ball miller for various times, the synthesis reaction process of the Al Ti C powder mixture were investigated by difference thermal analysis (DTA) and X ray diffractometry (XRD). According to the patterns of reaction peaks on the DTA curves, the activation energy of each reaction was calculated. The experimental results of DTA show that the synthesis reaction of Al Ti C powder mixture can be enhanced after high energy milling. The longer the milling time, the lower the reaction temperature. The synthesis reaction of TiC is transformed from Ti+C→TiC to Al 3Ti+C→TiC+3Al with long period milling. Meanwhile, the activation energy of the reaction reduces with increasing milling time. The effect of milling time on reduced activation energy for low temperature region is more significant than that for high temperature region.
文摘It was shown by TEM and X-ray analysis that there are four types of grains of the main Ni3Al phase in the structure of the intermetallic obtained by the self-propagation high temperature method (SHS). Every type of grains has its own domain and dislocation structure. There are mono- and polydomains with and without dislocations. The grains of the main phase of monoand polydomains without dislocations and polydomains with dislocations were formed by diffusion in the solid phase. In these conditions NiAl3 phase is located on the grain boundary of the main phase. The Ni2Al3 phase is located at the triple joints of the main phase.
基金Funded by the Basic Research of Chongqing Municipal Education Commission(Grant No.KJ080825)Natural Science Research Fund for the Doctors of Chongqing Normal University(Grant No.08XLB015)
文摘The relationship between Compton scattered photon counts per unit mass and the content of a component in a binary powder mixture is deduced based on the Compton scattering theory.This relationship can be regarded linear after some approximations.The scattered photon counts per unit mass increases faster with the content when the difference of the atomic numbers of the two components in the binary powder mixture is larger.The relationship was verified with Compton scattering experiments on a series of Ni-Cu and Fe-C binary powder mixtures.The method of using this linear dependene of scattered photon counts on the content of a binary powder mixture to ascertain the component content in a binary mixture was introduced.
文摘The Ni_3B phase was formed when boron (0.5 at. pct B) was added to the intermetallic of sto- ichiometric and off-stoichiometric (Ni-24 at. pct Al) compounds. In the alloy of stoichiometric composition the particles of Ni_3B phase has the size around 0.1μm and is located on the grain boundary of the main phase. The decreasing of concentrations of Al in the ofF-stoichiometric alloy leads to increase in the degree of the long-range order parameter, increasing the concen- trations of boron in the solid solution and decreasing its localization on the grain boundary. Microalloying of boron leads to increasing in the fraction of grain monodomains with disloca- tions up to 0.7 in the alloy of the off-stoichiometric composition and up to 1 in the alloy of the stoichiometric composition. It was established the correlation between the degree of the concentration inhomogeneity, average density of the dislocations and the average long range-order parameter.
基金supported by Qianjiang Talent Program of Science and Technology Department of Zhejiang Province(2007R10039)Major State Basic Research Development Program of China (2005CB724204)2008 University Students Science and Technology Innovation Project of Zhejiang Province
文摘[ Objective] To explore the possibility of treating livestock manure with white-rot fungi. [Method] The wood powder-chicken manure mixture was respectively composted by three kinds of white-rot fungi, the weight of lignin, cellulose, protein, fat, ash and crude polysaccharide as well as the mycelial growth was determined during this process. [ Result] The mixture was better composted with white-rot fungi than the control. The best effect was achieved in P. ostreatus composting group. In this group, the rate of weight reduction, lignin degradation and cellulose degradation were respectively 15.68% (6.79 times as great as that of the control group), 39.92% (6.54 times as great as that of the control group) and 32.26% (2.77 times as great as that of the control group). The weight of protein and fat were increased by 31.68% and 146.58%, respectively. The content of crude polysaccharide was 2.43%. No crude polysaccharide was detected, and the weight of protein and fat decreased by 21.96% and 70.99%, respectively. [ Conclusion] It is feasible to compost livestock and poultry manure with white-rot fungi.
文摘In order to investigate the microstructural evolution during self-propagating high-temperature synthesis (SHS) of Ti-Al powder mixture with an atomic ratio of Ti: Al=1:1, a combustion front quenching method (CFQM) was used for extinguishing the propagating combustion wave, and the microstructures on the quenched sample were observed with scanning electron microscope (SEM) and analyzed with energy dispersive spectrometry (EDS). In addition, the combustion temperature of the reaction was measured, and the phase constituent of the synthesized product was inspected by X-ray diffraction (XRD). The results showed that the combustion reaction started from melting of the Al particles, and the melting resulted in dissolving of the Ti particles and forming of Al3Ti grains. As the Al liquid was depleted, the combustion reaction proceeded through solid-state diffusion between the solid Al3Ti and the solid Ti. This led to the forming of TiAl and Ti3Al diffusing layers. In addition, the combustion reaction is incomplete besides TiAl, there are a large amount of Ti3Al and TiAl3 and a small amount of Ti in the final product. This incompleteness chiefly results from the using of coarser Ti powder.