Multilayered Ti-Al based intermetallic sheets were fabricated by sintering alternately layered titanium and aluminum foils.The microstructure and phase formation of the obtained sheets under different sintering condit...Multilayered Ti-Al based intermetallic sheets were fabricated by sintering alternately layered titanium and aluminum foils.The microstructure and phase formation of the obtained sheets under different sintering conditions were evaluated by various techniques.The results reveal that when the sintering temperature is above the melting point of aluminum,the self-propagating high-temperature synthesis reaction occurs between Ti and Al,and forms various phases of Ti-based solid solutions including α-Ti Ti3Al,TiAl,TiAl2 and α-Ti including TiAl3,etc.When the sintering time increased,Ti-based solid solution,TiAl2 and TiAl3 disappeared gradually,and the sheet containing Ti3Al and TiAl phases in a multilayered structure formed finally.A lot of voids were also observed in the sintered structures,which were caused by the melting Al,Kirkendall effect and the difference of molar volumes between reactants and products.The voids were eliminated and a dense sample was obtained by the following hot press.展开更多
Ti−Al−V−Nb alloys with the cluster formula,12[Al−Ti_(12)](AlTi_(2))+5[Al−Ti1_(4)](V,Nb)2Ti,were designed by replacing V with Nb based on the Ti−6Al−4V alloy.Single-track cladding layers and bulk samples of the alloys ...Ti−Al−V−Nb alloys with the cluster formula,12[Al−Ti_(12)](AlTi_(2))+5[Al−Ti1_(4)](V,Nb)2Ti,were designed by replacing V with Nb based on the Ti−6Al−4V alloy.Single-track cladding layers and bulk samples of the alloys with Nb contents ranging from 0 to 6.96 wt.%were prepared by laser additive manufacturing to examine their formability,microstructure,and mechanical properties.For single-track cladding layers,the addition of Nb increased the surface roughness slightly and decreased the molten pool height to improve its spreadability.The alloy,Ti−5.96Al−1.94V−3.54Nb(wt.%),exhibited better geometrical accuracy than the other alloys because its molten pool height was consistent with the spread layer thickness of the powder.The microstructures of the bulk samples contained similar columnar β-phase grains,regardless of Nb content.These grains grew epitaxially from the Ti substrate along the deposition direction,with basket-weaveα-phase laths within the columnar grains.Theα-phase size increased with increasing Nb contents,but its uniformity decreased.Along the deposition direction,the Vickers hardness increased from the substrate to the surface.The Ti−5.96Al−1.94V−3.54Nb alloy exhibited the highest Vickers hardness regardless of deposition position because of the optimal matching relationship between theα-phase size and its content among the designed alloys.展开更多
The microstructure formation and strengthening of an Al-5 wt.%TiO2 composites with additions of 5 wt.%Cu and 2 wt.% stearic acid(as a process control agent, PCA) during mechanical alloying and subsequent thermal expos...The microstructure formation and strengthening of an Al-5 wt.%TiO2 composites with additions of 5 wt.%Cu and 2 wt.% stearic acid(as a process control agent, PCA) during mechanical alloying and subsequent thermal exposure were studied. The powder composites were prepared by high-energy ball milling for up to 10 h. Single line tracks of the powders were laser melted. Optical and scanning electron microscopy, XRD analysis and differential scanning calorimetry were used to study microstructural evolution. The results showed that the Cu addition promotes an effective mechanical alloying of aluminum with Ti O2 from the start of milling, resulting in higher microhardness(up to HV 290), while the PCA, on the contrary, postpones this process. In both cases, the composite granules with uniform distribution of Ti O2 particles were formed. Subsequent heating of mechanically alloyed materials causes the activation of an exothermic reaction of Ti O2 reduction with aluminum, the start temperature of which, in the case of Cu addition,shifts to lower values, that is, the transformation begins in the solid state. Besides, the Cu-added material after laser melting demonstrates a more dispersed and uniform structure which positively affects its microhardness.展开更多
基金Project (2010DFA51650) supported by the Ministry of Science and Technology of China
文摘Multilayered Ti-Al based intermetallic sheets were fabricated by sintering alternately layered titanium and aluminum foils.The microstructure and phase formation of the obtained sheets under different sintering conditions were evaluated by various techniques.The results reveal that when the sintering temperature is above the melting point of aluminum,the self-propagating high-temperature synthesis reaction occurs between Ti and Al,and forms various phases of Ti-based solid solutions including α-Ti Ti3Al,TiAl,TiAl2 and α-Ti including TiAl3,etc.When the sintering time increased,Ti-based solid solution,TiAl2 and TiAl3 disappeared gradually,and the sheet containing Ti3Al and TiAl phases in a multilayered structure formed finally.A lot of voids were also observed in the sintered structures,which were caused by the melting Al,Kirkendall effect and the difference of molar volumes between reactants and products.The voids were eliminated and a dense sample was obtained by the following hot press.
基金the National Key Research and Development Program of China(No.2016YFB1100103)。
文摘Ti−Al−V−Nb alloys with the cluster formula,12[Al−Ti_(12)](AlTi_(2))+5[Al−Ti1_(4)](V,Nb)2Ti,were designed by replacing V with Nb based on the Ti−6Al−4V alloy.Single-track cladding layers and bulk samples of the alloys with Nb contents ranging from 0 to 6.96 wt.%were prepared by laser additive manufacturing to examine their formability,microstructure,and mechanical properties.For single-track cladding layers,the addition of Nb increased the surface roughness slightly and decreased the molten pool height to improve its spreadability.The alloy,Ti−5.96Al−1.94V−3.54Nb(wt.%),exhibited better geometrical accuracy than the other alloys because its molten pool height was consistent with the spread layer thickness of the powder.The microstructures of the bulk samples contained similar columnar β-phase grains,regardless of Nb content.These grains grew epitaxially from the Ti substrate along the deposition direction,with basket-weaveα-phase laths within the columnar grains.Theα-phase size increased with increasing Nb contents,but its uniformity decreased.Along the deposition direction,the Vickers hardness increased from the substrate to the surface.The Ti−5.96Al−1.94V−3.54Nb alloy exhibited the highest Vickers hardness regardless of deposition position because of the optimal matching relationship between theα-phase size and its content among the designed alloys.
基金the Ministry of Education and Science of the Russian Federation in the framework of the State Assignment to the Universities(Project No.11.7172.2017/8.9).
文摘The microstructure formation and strengthening of an Al-5 wt.%TiO2 composites with additions of 5 wt.%Cu and 2 wt.% stearic acid(as a process control agent, PCA) during mechanical alloying and subsequent thermal exposure were studied. The powder composites were prepared by high-energy ball milling for up to 10 h. Single line tracks of the powders were laser melted. Optical and scanning electron microscopy, XRD analysis and differential scanning calorimetry were used to study microstructural evolution. The results showed that the Cu addition promotes an effective mechanical alloying of aluminum with Ti O2 from the start of milling, resulting in higher microhardness(up to HV 290), while the PCA, on the contrary, postpones this process. In both cases, the composite granules with uniform distribution of Ti O2 particles were formed. Subsequent heating of mechanically alloyed materials causes the activation of an exothermic reaction of Ti O2 reduction with aluminum, the start temperature of which, in the case of Cu addition,shifts to lower values, that is, the transformation begins in the solid state. Besides, the Cu-added material after laser melting demonstrates a more dispersed and uniform structure which positively affects its microhardness.