期刊文献+
共找到5,183篇文章
< 1 2 250 >
每页显示 20 50 100
Stoichiometric NbTiAl_3 (γ1 Phase) Alloy in Ti-Al-Nb Ternary System
1
作者 Jingxia CAO Jinjun DING and Shiming HAO (Dept. of Materials Science and Technology, Northeastern University Shenyang 110006, China)(To whom correspondence should be addressed)Guoliang CHEN (Dept. of Materials Science and Technology University of Science 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1996年第6期464-466,共3页
The microstructure and phase constitution in stoichiometric NbTiAl3 (γ1 phase) alloy treated at 1000℃ were examined by metallography and X-ray diffraction. The alloy microstructure is mainly γ1 phase containing η ... The microstructure and phase constitution in stoichiometric NbTiAl3 (γ1 phase) alloy treated at 1000℃ were examined by metallography and X-ray diffraction. The alloy microstructure is mainly γ1 phase containing η second phase [(Ti,Nb)Al3] less than 1%. DTA analysis shows no phase transformation from room temperature to 1200℃. In the diffusion couple of NbTiAl3 with 7-TiAl compound, clear phase boundary and composition jump exist between γ1 and γ phase.These results further confirm the existence of γ1 single phase at 1000℃ in Ti-Al-Nb ternary system. 展开更多
关键词 TI Stoichiometric NbTiAl3 Alloy in ti-al-nb ternary System PHASE
下载PDF
PHASE EQUILIBRIA OF α_2(α)/γ IN Ti-Al-Nb TERNARY SYSTEM 被引量:1
2
作者 Ding Jinjun, Zhao Gang, Hao Shiming Department of Materials Science and Engineering School of Materials and Metallurgy, Northeastern University, Shenyang 110006 《中国有色金属学会会刊:英文版》 CSCD 1997年第4期21-24,共4页
PHASEEQUILIBRIAOFα2(α)/γINTiAlNbTERNARYSYSTEM①DingJinjun,ZhaoGang,HaoShimingDepartmentofMaterialsSciencean... PHASEEQUILIBRIAOFα2(α)/γINTiAlNbTERNARYSYSTEM①DingJinjun,ZhaoGang,HaoShimingDepartmentofMaterialsScienceandEngineringSchool... 展开更多
关键词 Ti Al Nb ternary SYSTEM diffusion COUPLE α 2(α)/γ PHASE EQUILIBRIA
下载PDF
Recent progress in ternary mixed matrix membranes for CO_(2) separation 被引量:1
3
作者 Zikang Qin Yulei Ma +13 位作者 Jing Wei Hongfang Guo Bangda Wang Jing Deng Chunhai Yi Nanwen Li Shouliang Yi Yi Deng Wentao Du Jian Shen Wenju Jiang Lu Yao Lin Yang Zhongde Dai 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期831-858,共28页
Mixed matrix membranes(MMMs)could combine the advantages of both polymeric membranes and porousfillers,making them an effective alternative to conventional polymer membranes.However,interfacial incompatibility issues,s... Mixed matrix membranes(MMMs)could combine the advantages of both polymeric membranes and porousfillers,making them an effective alternative to conventional polymer membranes.However,interfacial incompatibility issues,such as the presence of interfacial voids,hardening of polymer chains,and blockage of micropores by polymers between common MMMsfillers and the polymer matrix,currently limit the gas sep-aration performance of MMMs.Ternary phase MMMs(consisting of afiller,an additive,and a matrix)made by adding a third compound,usually functionalized additives,can overcome the structural problems of binary phase MMMs and positively impact membrane separation performance.This review introduces the structure and fabrication processes for ternary MMMs,categorizes various nanofillers and the third component,and summarizes and analyzes in detail the CO_(2) separation performance of newly developed ternary MMMs based on both rubbery and glassy polymers.Based on this separation data,the challenges of ternary MMMs are also discussed.Finally,future directions for ternary MMMs are proposed. 展开更多
关键词 CO_(2) separation Mixed matrix membranes ternary phase
下载PDF
Nontrivial Topological Phases in Ternary Borides M_(2)XB_(2)(M=W,Mo;X=Co,Ni)
4
作者 袁丹文 岳长明 +1 位作者 胡岳芳 张薇 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第3期131-139,共9页
The nontrivial band topologies protected by certain symmetries have attracted significant interest in condensed matter physics.The discoveries of nontrivial topological phases in real materials provide a series of arc... The nontrivial band topologies protected by certain symmetries have attracted significant interest in condensed matter physics.The discoveries of nontrivial topological phases in real materials provide a series of archetype materials to further explore the topological physics. 展开更多
关键词 nontrivial TOPOLOGICAL ternary
下载PDF
In-depth analysis of VARTM-based solid-state supercapacitors utilizing CNT-dispersed cobalt-bismuth-samarium ternary hydroxide on woven carbon fiber for enhanced energy storage
5
作者 Fouzia Mashkoor Mohd Shoeb +2 位作者 Hongjun Jeong Mohammad Naved Khan Changyoon Jeong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期498-512,I0010,共16页
Multi-metal hydroxides possess unique physical and chemical properties,making them promising candidates for supercapacitor working electrodes.Enhancing their electrochemical performance can be achieved through a combi... Multi-metal hydroxides possess unique physical and chemical properties,making them promising candidates for supercapacitor working electrodes.Enhancing their electrochemical performance can be achieved through a combination with carbon materials.In this study,we synthesized a composite material by hydrothermally dispersed 4,6,and 10 wt%carbon nanotubes(CNT)into ternary cobaltbismuth-samarium hydroxide(CoBiSm-TOH).These nanocomposites were employed as the material for the working electrode in a supercapacitor.The findings reveal that at 1.5 A/g,the specific capacitance of CNT3@CoBiSm-TOH,using a three-electrode system,was found to be 852.91 F/g,higher than that of CoBi-BOH,CoBiSm-TOH,CNT1@CoBiSm-TOH and CNT5@CoBiSm-TOH-measuring 699.69,750.34,789.54 and 817.79 F/g,respectively.Moreover,CNT3@CoBiSm-TOH electrodes exhibited a capacitance retention of around 88%over 10,000 cycles.To demonstrate practical applicability,CNT3@CoBiSm-TOH was grown on woven carbon fiber(WCF),and a solid-state supercapacitor device was developed using the VARTM(vacuum-assisted resin transfer molding).This device displayed a specific capacitance of 272.67 F/g at 2.25 A/g.Notably,it achieved a maximum energy density of 53.01 Wh/kg at a power density of 750 W/kg and sustained excellent cycle stability over 50,000 cycles,maintaining 70%of its initial capacitance.These results underscore the importance of interfacial nanoengineering and provide crucial insights for the development of future energy storage devices. 展开更多
关键词 ternary hydroxide Carbon nanotube Synergistic effect VARTM Supercapacitor
下载PDF
Mechanism in Solidification of a Ternary Nickel Based Alloy
6
作者 田密 成博 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期1018-1024,共7页
The experiment employed the use of melt purification and cyclic superheating technique to achieve maximum undercooling of Ni65Cu31Co4 alloy at 300K.Simultaneously,high-speed photography techniques were used to capture... The experiment employed the use of melt purification and cyclic superheating technique to achieve maximum undercooling of Ni65Cu31Co4 alloy at 300K.Simultaneously,high-speed photography techniques were used to capture the process of alloy liquid phase interface migration,and analyzed the relationship between the shape characteristics of the front end of alloy solidification and undercooling.The microstructure of the alloy was observed through metallographic microscopy,and the micro-morphological characteristics and evolution of the rapidly solidified microstructure were systematically studied.It is found that the grain refinement mechanism of Ni-Cu-Co ternary alloy is similar to that of Ni-Cu binary alloy.Grain refinement at low undercooling is caused by intense dendritic remelting,while grain refinement at high undercooling is attributed to recrystallization,driven by the stress and plastic strain accumulated from the interaction of liquid flow and primary dendrites caused by rapid solidification.It also shows that the addition of the third element Co plays a significant role in solidification rate and re-ignition effect. 展开更多
关键词 UNDERCOOLING RECALESCENCE Ni-Cu-Co ternary alloy grain refinement RECRYSTALLIZATION
下载PDF
Valuable metals recovery from spent ternary lithium-ion battery:A review
7
作者 Hao Liao Shengen Zhang +3 位作者 Bo Liu Xuefeng He Jixin Deng Yunji Ding 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2556-2581,共26页
Ternary lithium-ion batteries(LIBs),widely used in new energy vehicles and electronic products,are known for their high en-ergy density,wide operating temperature range,and excellent cycling performance.With the rapid... Ternary lithium-ion batteries(LIBs),widely used in new energy vehicles and electronic products,are known for their high en-ergy density,wide operating temperature range,and excellent cycling performance.With the rapid development of the battery industry,the recycling of spent ternary LIBs has become a hot topic because of their economic value and environmental concerns.To date,a con-siderable amount of literature has reported on the recycling of spent ternary LIBs designed to provide an efficient,economical,and envir-onmentally friendly method for battery recycling.This article examines the latest developments in various technologies for recycling spent ternary LIBs in both research and practical production,including pretreatment,pyrometallurgy,hydrometallurgy,pyro-hydrometallurgy,and direct regeneration.Suggestions for addressing challenges based on the benefits and disadvantages of each method are made.Finally,through a comparison of the feasibility and economic benefits of various technologies,the challenges faced during battery recycling are summarized,and future development directions are proposed. 展开更多
关键词 spent ternary LIBs recycling technologies valuable metals economic analysis
下载PDF
Light emission from multiple self-trapped excitons in one-dimensional Ag-based ternary halides
8
作者 Jiahao Xie Zewei Li +1 位作者 Shengqiao Wang Lijun Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期62-69,共8页
Ternary metal halides based on Cu(I)and Ag(I)have attracted intensive attention in optoelectronic applications due to their excellent luminescent properties,low toxicity,and robust stability.While the self-trapped exc... Ternary metal halides based on Cu(I)and Ag(I)have attracted intensive attention in optoelectronic applications due to their excellent luminescent properties,low toxicity,and robust stability.While the self-trapped excitons(STEs)emission mechanisms of Cu(I)halides are well understood,the STEs in Ag(I)halides remain less thoroughly explored.This study explores the STE emission efficiency within the A_(2)AgX_(3)(A=Rb,Cs;X=Cl,Br,I)system by identifying three distinct STE states in each material and calculating their configuration coordinate diagrams.We find that the STE emission efficiency in this system is mainly determined by STE stability and influenced by self-trapping and quenching barriers.Moreover,we investigate the impact of structural compactness on emission efficiency and find that the excessive electron–phonon coupling in this system can be reduced by increasing the structural compactness.The atomic packing factor is identified as a low-cost and effective descriptor for predicting STE emission efficiency in both Cs_(2)AgX_(3) and Rb_(2)AgX_(3) systems.These findings can deepen our understanding of STE behavior in metal halide materials and offer valuable insights for the design of efficient STE luminescent materials.The datasets presented in this paper are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.12094. 展开更多
关键词 self-trapped exciton Ag-based ternary halides configuration coordinate diagrams emission efficiency
下载PDF
Precision tuning of highly efficient Pt-based ternary alloys on nitrogen-doped multi-wall carbon nanotubes for methanol oxidation reaction
9
作者 Xingqun Zheng Zhengcheng Wang +3 位作者 Qian Zhou Qingmei Wang Wei He Shun Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期242-251,I0006,共11页
The electrochemical methanol oxidation is a crucial reaction in the conversion of renewable energy.To enable the widespread adoption of direct methanol fuel cells(DMFCs),it is essential to create and engineer catalyst... The electrochemical methanol oxidation is a crucial reaction in the conversion of renewable energy.To enable the widespread adoption of direct methanol fuel cells(DMFCs),it is essential to create and engineer catalysts that are both highly effective and robust for conducting the methanol oxidation reaction(MOR).In this work,trimetallic PtCoRu electrocatalysts on nitrogen-doped carbon and multi-wall carbon nanotubes(PtCoRu@NC/MWCNTs)were prepared through a two-pot synthetic strategy.The acceleration of CO oxidation to CO_(2) and the blocking of CO reduction on adjacent Pt active sites were attributed to the crucial role played by cobalt atoms in the as-prepared electrocatalysts.The precise control of Co atoms loading was achieved through precursor stoichiometry.Various physicochemical techniques were employed to analyze the morphology,element composition,and electronic state of the catalyst.Electrochemical investigations and theoretical calculations confirmed that the Pt_(1)Co_(3)Ru_(1)@NC/MWCNTs exhibit excellent electrocatalytic performance and durability for the process of MOR.The enhanced MOR activity can be attributed to the synergistic effect between the multiple elements resulting from precisely controlled Co loading content on surface of the electrocatalyst,which facilitates efficient charge transfer.This interaction between the multiple components also modifies the electronic structures of active sites,thereby promoting the conversion of intermediates and accelerating the MOR process.Thus,achieving precise control over Co loading in PtCoRu@NC/MWCNTs would enable the development of high-performance catalysts for DMFCs. 展开更多
关键词 ternary alloys ELECTROCATALYSTS Methanol oxidation reaction Electron transfer Theoretical calculations
下载PDF
π-Extended giant dimeric acceptor as a third component enables highly efficient ternary organic solar cells with efficiency over 19.2%
10
作者 Mengran Peng Haotian Wu +7 位作者 Liming Wu Jianhua Chen Ruijie Ma Qunping Fan Hua Tan Weiguo Zhu Hongxiang Li Junqiao Ding 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期263-270,I0006,共9页
Ternary strategy with a suitable third component is a successful strategy to improve the photovoltaic performance of organic solar cells(OSCs).Very recently,Y-series based giant molecule acceptors or oligomerized acce... Ternary strategy with a suitable third component is a successful strategy to improve the photovoltaic performance of organic solar cells(OSCs).Very recently,Y-series based giant molecule acceptors or oligomerized acceptors have emerged as promising materials for achieving highly efficient and stable binary OSCs,while application as third component for ternary OSCs is limited.Here a novelπ-extended giant dimeric acceptor,GDF,is developed based on central Y series core fusion and rigid BDT as linker,and then incorporated into the state-of-the-art PM1:PC6 system to construct ternary OSCs.The GDF has a near planar backbone,resulting in increasedπ-conjugation,excellent crystallinity,and good electron transport capacity.When GDF is introduced into the PM1:PC6 system,it ensues in a cascade like the lowest unoccupied molecular orbitals(LUMO)energy level alignment,a complementary absorption band with PM1 and PC6,higher and balanced hole and electron mobility,slightly smaller domain size,and a higher exciton dissociation probability for PM1:PC6:GDF(1:1.1:0.1)blend film.As a consequence,the PM1:PC6:GDF(1:1.1:0.1)ternary OSC achieves a champion PCE of 19.22%,with a significantly higher open-circuit voltage and short-circuit current density,compared to 18.45%for the PM1:PC6(1:1.2)binary OSC.Our findings show that employing aπ-extended giant dimeric acceptor as a third component significantly improves the photovoltaic performance of ternary OSCs. 展开更多
关键词 Giant dimeric acceptor Third component ternary organic solar cells
下载PDF
Reconfigurable mechanism-based metamaterials for ternary-coded elastic wave polarizers and programmable refraction control
11
作者 Zhou HU Zhibo WEI +1 位作者 Yan CHEN Rui ZHU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第7期1225-1242,共18页
Elastic metamaterials with unusual elastic properties offer unprecedented ways to modulate the polarization and propagation of elastic waves.However,most of them rely on the resonant structural components,and thus are... Elastic metamaterials with unusual elastic properties offer unprecedented ways to modulate the polarization and propagation of elastic waves.However,most of them rely on the resonant structural components,and thus are frequency-dependent and unchangeable.Here,we present a reconfigurable 2D mechanism-based metamaterial which possesses transformable and frequency-independent elastic properties.Based on the proposed mechanism-based metamaterial,interesting functionalities,such as ternarycoded elastic wave polarizer and programmable refraction,are demonstrated.Particularly,unique ternary-coded polarizers,with 1-trit polarization filtering and 2-trit polarization separating of longitudinal and transverse waves,are first achieved.Then,the strong anisotropy of the proposed metamaterial is harnessed to realize positive-negative bi-refraction,only-positive refraction,and only-negative refraction.Finally,the wave functions with detailed microstructures are numerically verified. 展开更多
关键词 elastic metamaterial elastic wave reconfigurable design zero mode ternary code programmable refraction
下载PDF
Recent Advances in Interface Modification of Cu/graphite Composites and Layered Ternary Carbides of Modified Layer Candidate
12
作者 WEI Hongming LI Mingchao +4 位作者 LI Xiaoya ZHAN Wenyi LI Feiyang DAI Yanzhang ZOU Jianpeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1061-1072,共12页
We review the fundamental properties and significant issues related to Cu/graphite composites.In particular,recent research on the interfacial modification of Cu/graphite composites is addressed,including the metal-mo... We review the fundamental properties and significant issues related to Cu/graphite composites.In particular,recent research on the interfacial modification of Cu/graphite composites is addressed,including the metal-modified layer,carbide-modified layer,and combined modified layer.Additionally,we propose the use of ternary layered carbide as an interface modification layer for Cu/graphite composites. 展开更多
关键词 Cu/graphite composites interfacial bonding surface modification WETTABILITY layered ternary carbides
下载PDF
Research on Preparation and Electrochemical Performance of the High Compacted Density Ni-Co-Mn Ternary Cathode Materials
13
作者 Fupeng Zhi Juanhui Wang +1 位作者 Xiaomin Zhang Jun Zhang 《Advances in Materials Physics and Chemistry》 CAS 2024年第3期47-53,共7页
The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was syn... The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was synthesized by high temperature solid-state method, taking the Mg element as a doping element and the spherical Ni<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> (OH)<sub>2</sub>, Li<sub>2</sub>CO<sub>3</sub> as raw materials. The effects of calcination temperature on the structure and properties of the products were investigated. The structure and morphology of cathode materials powder were analyzed by X-ray diffraction spectroscopy (XRD) and scanning electronmicroscopy (SEM). The electrochemical properties of the cathode materials were studied by charge-discharge test and cyclic properties test. The results show that LiNi<sub>0.4985</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> Mg<sub>0.0015</sub>O<sub>2</sub> cathode material prepared at calcination temperature 930°C has a good layered structure, and the compacted density of the electrode sheet is above 3.68 g/cm<sup>3</sup>. The discharge capacity retention rate is more than 97.5% after 100 cycles at a charge-discharge rate of 1C, displaying a good cyclic performance. 展开更多
关键词 High Compacted Density ternary Cathode Materials Electrochemical Performance
下载PDF
Alkyl chain modulation of asymmetric hexacyclic fused acceptor synergistically with wide bandgap third component for high efficiency ternary organic solar cells
14
作者 Shufang Li Huilan Guan +4 位作者 Can Zhu Chaoyuan Sun Qingya Wei Jun Yuan Yingping Zou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1713-1719,共7页
Herein,two asymmetric hexacyclic fused small molecule acceptors(SMAs),namely BP4F-HU and BP4F-UU,were synthesized.The elongated outside chains in the BP4F-UU molecule played a crucial role in optimizing the morphology... Herein,two asymmetric hexacyclic fused small molecule acceptors(SMAs),namely BP4F-HU and BP4F-UU,were synthesized.The elongated outside chains in the BP4F-UU molecule played a crucial role in optimizing the morphology of blend film,thereby improving charge mobility and reducing energy loss within the corresponding film.Notably,the PM6:BP4F-UU device exhibited a higher open-circuit voltage(V_(oc))of 0.878 V compared to the PM6:BP4F-HU device with a V_(oc)of 0.863 V.Further,a new wide bandgap SMA named BTP-TA was designed and synthesized as the third component to the PM6:BP4F-UU host binary devices,which showed an ideal complementary absorption spectrum in PM6:BP4F-UU system.In addition,BTP-TA can achieve efficient intermolecular energy transfer to BP4F-UU by fluorescence resonance energy transfer(FRET)pathway,due to the good overlap between the photoluminescence(PL)spectrum of BTP-TA and the absorption region of BP4F-UU.Consequently,ternary devices with 15wt%BTP-TA exhibits broader photon utilization,optimal blend morphology,and reduced charge recombination compared to the corresponding binary devices.Consequently,PM6:BP4F-UU:BTP-TA ternary device achieved an optimal power conversion efficiency(PCE)of 17.83%with simultaneously increased V_(oc)of 0.905 V,short-circuit current density(J_(sc))of 26.14 mA/cm^(2),and fill factor(FF)of 75.38%. 展开更多
关键词 asymmetric hexacyclic acceptor outside chain wide bandgap acceptor ternary organic solar cells
下载PDF
Enhanced Evaporation of Ternary Mixtures in Porous Medium with Microcolumn Configuration
15
作者 Bo Zhang Yunxie Huang +4 位作者 Peilin Cui Zhiguo Wang Duo Ding Zhenhai Pan Zhenyu Liu 《Frontiers in Heat and Mass Transfer》 EI 2024年第4期997-1016,共20页
The high surface area of porous media enhances its efficacy for evaporative cooling,however,the evaporation of pure substances often encounters issues including local overheating and unstable heat transfer.To address ... The high surface area of porous media enhances its efficacy for evaporative cooling,however,the evaporation of pure substances often encounters issues including local overheating and unstable heat transfer.To address these challenges,a volume of fluid(VOF)model integrated with a species transport model was developed to predict the evaporation processes of ternary mixtures(water,glycerol,and 1,2-propylene glycol)in porous ceramics in this study.It reveals that the synergistic effects of thermal conduction and convective heat transfer significantly influence the mixtures evaporation,causing the fluctuations in evaporation rates.The obtained result shows a significant increase in water evaporation rates with decreasing the microcolumn size.At a pore size of 30μm and a porosity of 30%,an optimal balance between capillary forces and flow resistance yields a peak water release rate of 96.0%.Furthermore,decreasing the glycerol content from 70%to 60%enhances water release by 10.6%.The findings in this work propose the approaches to optimize evaporative cooling technologies by controlling the evaporation of mixtures in porous media. 展开更多
关键词 ternary mixtures porous medium EVAPORATION numerical simulation evaporative cooling
下载PDF
Study of the Viscosity and Specific Gravity of the Ternary Used Frying Oil (UFO)-Bioethanol-Diesel System
16
作者 Konan Edmond Kouassi Abollé Abolle +3 位作者 N’guessan Luc Brou David Boa N’guessan Raymond Kre Kouassi Benjamin Yao 《Journal of Materials Science and Chemical Engineering》 2024年第4期53-66,共14页
Fossil fuels cover around 80% of global energy consumption. However, the problems linked to their use justify the choice of using biofuel. In order to reduce as much as possible, diesel rate, an increase in the number... Fossil fuels cover around 80% of global energy consumption. However, the problems linked to their use justify the choice of using biofuel. In order to reduce as much as possible, diesel rate, an increase in the number of additives may be considered. Thus, in this work, the study of the used frying oil (UFO), bioethanol and diesel ternary system was undertaken. It emerges from this study that the addition of bioethanol reduces the viscosity and the density of the ternary system and permits a 90% substitution rate for diesel between the UFO and bioethanol. Finally, the percentage of oil becomes 40% after adding alcohol compared to the binary diesel crude vegetable oil mixture where this rate is 30%. 展开更多
关键词 Biofuel UFO-Bioethanol-Diesel ternary Density VISCOSITY
下载PDF
Highly Aligned Ternary Nanofiber Matrices Loaded with MXene Expedite Regeneration of Volumetric Muscle Loss
17
作者 Moon Sung Kang Yeuni Yu +5 位作者 Rowoon Park Hye Jin Heo Seok Hyun Lee Suck Won Hong Yun Hak Kim Dong‑Wook Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期269-292,共24页
Current therapeutic approaches for volumetric muscle loss(VML)face challenges due to limited graft availability and insufficient bioactivities.To overcome these limitations,tissue-engineered scaffolds have emerged as ... Current therapeutic approaches for volumetric muscle loss(VML)face challenges due to limited graft availability and insufficient bioactivities.To overcome these limitations,tissue-engineered scaffolds have emerged as a promising alternative.In this study,we developed aligned ternary nanofibrous matrices comprised of poly(lactide-co-ε-caprolactone)integrated with collagen and Ti_(3)C_(2)T_(x)MXene nanoparticles(NPs)(PCM matrices),and explored their myogenic potential for skeletal muscle tissue regeneration.The PCM matrices demonstrated favorable physicochemical properties,including structural uniformity,alignment,microporosity,and hydrophilicity.In vitro assays revealed that the PCM matrices promoted cellular behaviors and myogenic differentiation of C2C12 myoblasts.Moreover,in vivo experiments demonstrated enhanced muscle remodeling and recovery in mice treated with PCM matrices following VML injury.Mechanistic insights from next-generation sequencing revealed that MXene NPs facilitated protein and ion availability within PCM matrices,leading to elevated intracellular Ca^(2+)levels in myoblasts through the activation of inducible nitric oxide synthase(i NOS)and serum/glucocorticoid regulated kinase 1(SGK1),ultimately promoting myogenic differentiation via the m TOR-AKT pathway.Additionally,upregulated i NOS and increased NO–contributed to myoblast proliferation and fiber fusion,thereby facilitating overall myoblast maturation.These findings underscore the potential of MXene NPs loaded within highly aligned matrices as therapeutic agents to promote skeletal muscle tissue recovery. 展开更多
关键词 Ti_(3)C_(2)T_(x)MXene nanoparticle ternary nanofibrous matrices Myogenesis Regeneration of volumetric muscle loss Next generation sequencing
下载PDF
First-Principles Study of the New Layered Ternary Metal Telluride,Eu_(2)InTe_(5)
18
作者 Yiming Yu Yuchen Zou Jianan Bian 《材料科学与工程(中英文B版)》 2024年第1期7-13,共7页
In this study,we performed first-principles calculations using the VASP(Vienna Ab initio Simulation)software package to investigate the crystal structure,electronic structure,and optical properties of a new layered te... In this study,we performed first-principles calculations using the VASP(Vienna Ab initio Simulation)software package to investigate the crystal structure,electronic structure,and optical properties of a new layered ternary metal chalcogenide,Eu_(2)InTe_(5).Our results show that Eu_(2)InTe_(5) is a non-zero-gap metal with a layered structure characterized by strong intra-layer atomic bonding and weak inter-layer interaction,which suggests its potential application as a nanomaterial.We also studied the optical properties,including the absorption coefficient,imaginary and real parts of the complex dielectric constant,and found that Eu_(2)InTe_(5) exhibits strong photoresponse characteristics at the junction of ultraviolet and visible light as well as blue-green light,with peaks at wavelengths of 389 nm and 477 nm.This suggests that it could be used in the development of UV(ultraviolet)detectors and other optoelectronic devices.Furthermore,due to its strong absorption,low loss,and low reflectivity,Eu_(2)InTe_(5) has the potential to be used as a promising photovoltaic absorption layer in solar cells. 展开更多
关键词 ternary metal telluride first-principles calculations layered structure optical properties
下载PDF
Ternary Ag/AgCl/BiOIO_3 composites for enhanced visible-light-driven photocatalysis 被引量:13
19
作者 熊婷 张会均 +1 位作者 张育新 董帆 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第12期2155-2163,共9页
Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3... Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3 systems,as revealed by ultraviolet-visible diffuse-reflectance spectrometry,photocurrent response and electrochemical impedance spectroscopy. The Ag/AgC l/BiO IO3 composites are applied to the visible-light photocatalytic oxidization of NO in air and exhibit an enhanced activity for NO removal in comparison with Ag/AgC l and pure BiO IO3. A possible photocatalytic mechanism for Ag/AgC l/BiO IO3 is proposed,which is related to the surface plasmon resonance effects of Ag metal and the effective carrier separation ability of BiO IO3. This work provides insight into the design and preparation of BiO IO3-based materials with enhanced visible-light photocatalysis ability. 展开更多
关键词 Ag/AgCl/BiOIO3 ternary composite Visible-light photocatalysis Nitrogen oxide removal Charge seperation
下载PDF
Isothermal section of Mg-rich corner in Mg-Zn-Al ternary system at 335 °C 被引量:1
20
作者 任玉平 孙世能 +4 位作者 王利卿 郭运 李洪晓 李松 秦高梧 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第11期3405-3412,共8页
The phase equilibria and compositions at the Mg-rich corner of the Mg?Zn?Al ternary system at 335 °C were systemically investigated through the equilibrated alloy method by using X-ray diffraction (XRD) and scann... The phase equilibria and compositions at the Mg-rich corner of the Mg?Zn?Al ternary system at 335 °C were systemically investigated through the equilibrated alloy method by using X-ray diffraction (XRD) and scanning electron microscopy (SEM) assisted with energy dispersive spectroscopy of X-ray (EDS). It is experimentally testified that theα-Mg solid solution is not in equilibrium with the Mg32(Al, Zn)49 (τ) ternary intermetallic compound orq quasicrystalline phase, but only in equilibrium with one ternary intermetallic compound Al5Mg11Zn4 (φ). The whole composition range of theφ phase was also obtained at 335 °C, i.e., 52.5%?56.4% Mg, 13.6%?24.0% Al, 19.6%?33.9% Zn (mole fraction). The solubility of Al in the MgZn phase is remarkably more than that in the Mg7Zn3 phase, and the maximum is about 8.6% Al. Aluminum and zinc are simultaneously soluble in theα-Mg solid solution. 展开更多
关键词 Mg-Zn-Al ternary system isothermal section τ intermetallic compound SOLUBILITY
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部