Cast CrCoNiAIx (x=0-1.2) medium-entropy alloys (MEAs) were produced by arc melting and flip cast to investigate the alloying effect of AI addition on the microstructure, phase constituent and mechanical properties...Cast CrCoNiAIx (x=0-1.2) medium-entropy alloys (MEAs) were produced by arc melting and flip cast to investigate the alloying effect of AI addition on the microstructure, phase constituent and mechanical properties. The crystal structure changes from an initial face-centered cubic (FCC) to duplex FCC and body-centered cubic (BCC) and finally a single BCC with increasing AI content. In the duplex region, FCC and BCC phases form under a eutectic reaction in the interdendrite region. In the single BCC region, the dendrites transform to ordered B2 and disordered A2 BCC phases resulting from spinodal decomposition. Corresponding to their phase constituents, yield strength increases accompanied with an elongation reduction with increasing AI addition. A very interesting phenomenon of very weak ordered FCC (001) spots appearing in AI-0.4 alloy was observed, indicating a local ordering of FCC phase. The changes of fracture surfaces after the tensile deformation are also corresponding to the variations in mechanical properties.展开更多
In this study,non-equiatomic Fe_(70)Co_(7.5)Cr_(7.5)Ni_(7.5)V_(7.5) medium-entropy alloys(MEAs)with different carbon contents were prepared via mechanical ball-milling,cold pressing and vacuum sintering.The microstruc...In this study,non-equiatomic Fe_(70)Co_(7.5)Cr_(7.5)Ni_(7.5)V_(7.5) medium-entropy alloys(MEAs)with different carbon contents were prepared via mechanical ball-milling,cold pressing and vacuum sintering.The microstructural evolution,mechanical properties and wear resistance of the MEAs were investigated.Fe_(70)Co_(7.5)Cr_(7.5)Ni_(7.5)V_(7.5) exhibited a bodycentered cubic(bcc)structure withσphase precipitation.After adding 4 at%and 8 at%carbon,the phase composition of the alloys was transformed to bcc+MC+σand bcc+MC+M_(23)C_(6),respectively.The mechanical properties and wear resistance were observed to be significantly enhanced by the formation of carbides.Increasing the carbon content,the corresponding bending strength and hardness increased from 1520 to 3245 MPa and HRC 57.2 to HRC 61.4,respectively.Further,the dominant wear mechanism changed from the adhesion wear to the abrasion wear.Owing to the evenly distributed carbides and precipitated nanocarbides,Fe_(64.4)Co_(6.9)Cr_(6.9)Ni_(6.9)V_(6.9)C_(8) revealed an extremely low specific wear rate of 1.3×10^(−6) mm_(2)/(N·m)under a load of 10 N.展开更多
The tribological properties especially wear and hardness of a Ti-Al-V alloy with nitrogen implantation (energy 60 keV) were investigated. The implantation was carried out at fluences range from 1×1016 to 4×1...The tribological properties especially wear and hardness of a Ti-Al-V alloy with nitrogen implantation (energy 60 keV) were investigated. The implantation was carried out at fluences range from 1×1016 to 4×1017 ions/cm2. Glancing angle X-ray diffraction (GAXRD) and X-ray photoelectron spectroscopy (XPS) analyses were performed to obtain surface characterization of the implanted sample. The unimplanted and implanted samples were also annealed at 600 ℃ in order to understand the influence of annealing on the tribological properties of Ti-Al-V. The hardness shows significant improvement at the higher fluence. After annealing at 600 ℃, the friction coefficient exhibits a relative decrease for the nitrogen-implanted samples. In addition, the wear rates of the implanted samples exhibits a great decrease after annealing at 600 ℃. Nature of the surface and reason for the variation and improvement in wear resistance were discussed in detail.展开更多
Microstructure and mechanical properties of non-equiatomic(CuNi)_(100-x)Co_(x)(x=15,20,25 and 30,at.%)medium-entropy alloys(MEAs)prepared by vacuum arc-melting were investigated.Results show that all the as-cast MEAs ...Microstructure and mechanical properties of non-equiatomic(CuNi)_(100-x)Co_(x)(x=15,20,25 and 30,at.%)medium-entropy alloys(MEAs)prepared by vacuum arc-melting were investigated.Results show that all the as-cast MEAs exhibit dual face-centered cubic(fcc)solid-solution phases with identical lattice constant,showing typical dendrite structure consisting of(Ni,Co)-rich phase in dendrites and Cu-rich phase in inter-dendrites.The positive enthalpy of mixing among Cu and Ni-Co elements is responsible for the segregation of Cu.With the increase of Co content,the volume fraction of(Ni,Co)-rich phase increases while the Cu-rich phase decreases,resulting in an increment of yield strength and a decrement of elongation for the(CuNi)_(100-x)Co_(x) MEAs.Nano-indentation test results show a great difference of microhardness between the two fcc phases of the MEAs.The measured microhardness value of the(Ni,Co)-rich phase is almost twofold as compared to that of the Cu-rich phase in all the(CuNi)_(100-x)Co_(x) MEAs.During the deformation of the MEAs,the Cu-rich phase bears the main plastic strain,whereas the(Ni,Co)-rich phase provides more pronounced strengthening.展开更多
A series of as-cast lightweight multicomponent alloys Al(86-x)Mg10Zn2Cu2Six(x=0,0.3,0.6,0.9,1.2 at.%)were prepared by a vacuum induction furnace with a steel die.With the addition of Si,the reticular white Al-Cu phase...A series of as-cast lightweight multicomponent alloys Al(86-x)Mg10Zn2Cu2Six(x=0,0.3,0.6,0.9,1.2 at.%)were prepared by a vacuum induction furnace with a steel die.With the addition of Si,the reticular white Al-Cu phase deposited were gradually replaced by the gray eutectic Mg-Si phase,while the compressive strength of the alloys increases first and then decreases slowly.It is particularly noteworthy that the compression plasticity also exhibits this trend.When the Si content is 0.9 at.%,the compressive strength reaches its maximum at 779.11 MPa and the compressive plasticity reaches 20.91%.The effect of the addition of Si on the serration behavior of alloy was also studied;we found that the addition of Si introduces a new MgSi phase,and with the change of Si is significantly affects the morphology of the precipitated phase,which affects the serration behavior of the alloys.The comprehensive mechanical properties of the alloy are optimal at the critical point where the serration behavior disappears.In this work,we have provided a method and a composition for the preparation of a low-cost,high-strength,lightweight medium-entropy alloys.展开更多
Designing strong, yet ductile, and body-centered cubic(BCC) medium-entropy alloys(MEAs) remains to be a challenge nowadays.In this study, the strength–ductility trade-off of Ni_(0.6)CoFe_(1.4)MEAs was tackled via int...Designing strong, yet ductile, and body-centered cubic(BCC) medium-entropy alloys(MEAs) remains to be a challenge nowadays.In this study, the strength–ductility trade-off of Ni_(0.6)CoFe_(1.4)MEAs was tackled via introducing a BCC + face-centered cubic(FCC) dual-phase microstructure. Ni_(0.6)CoFe_(1.4)Nbx(x = 0, 0.05, 0.08, 0.10, and 0.15, in molar ratio) MEAs were prepared using vacuum induction melting. Results show that the new alloy is composed of BCC plus FCC dual phases featuring a network-like structure, and the BCC phase is the main phase in this alloy system. Moreover, the Nb0.10 MEA shows high strength and respectable tensile ductility, representing the best combination of the strength and fracture elongation among the alloys studied here. The remarkable strength of the Nb0.10 MEA is attributed to the combined effect of the solid solution strengthening, the precipitation hardening effect and the interface strengthening effect.展开更多
High-entropy alloys(HEAs)and medium-entropy alloys(MEAs)have attracted a great deal of attention for developing nuclear materials because of their excellent irradiation tolerance.Herein,formation and evolution of radi...High-entropy alloys(HEAs)and medium-entropy alloys(MEAs)have attracted a great deal of attention for developing nuclear materials because of their excellent irradiation tolerance.Herein,formation and evolution of radiation-induced defects in Ni Co Fe MEA and pure Ni are investigated and compared using molecular dynamics simulation.It is observed that the defect recombination rate of ternary Ni Co Fe MEA is higher than that of pure Ni,which is mainly because,in the process of cascade collision,the energy dissipated through atom displacement decreases with increasing the chemical disorder.Consequently,the heat peak phase lasts longer,and the recombination time of the radiation defects(interstitial atoms and vacancies)is likewise longer,with fewer deleterious defects.Moreover,by studying the formation and evolution of dislocation loops in Ni-Co-Fe alloys and Ni,it is found that the stacking fault energy in Ni-Co-Fe decreases as the elemental composition increases,facilitating the formation of ideal stacking fault tetrahedron structures.Hence,these findings shed new light on studying the formation and evolution of radiation-induced defects in MEAs.展开更多
The L1_(2)-strengthened Co_(34)Cr_(32)Ni_(27)Al_(4)Ti_(3)medium-entropy alloy(MEA)with precipitations of grain boundaries has been developed through selective laser melting(SLM)followed by cold rolling and annealing,e...The L1_(2)-strengthened Co_(34)Cr_(32)Ni_(27)Al_(4)Ti_(3)medium-entropy alloy(MEA)with precipitations of grain boundaries has been developed through selective laser melting(SLM)followed by cold rolling and annealing,exhibiting excellent strength-ductility synergy.The as-printed alloy exhibits low yield strength(YS)of~384 MPa,ultimate tensile strength(UTS)of~453 MPa,and uniform elongation(UE)of 1.5%due to the existence of the SLM-induced defects.After cold rolling and annealing,the YS,UTS,and UE are significantly increased to~739 MPa,~1230 MPa,and~47%,respectively.This enhancement primarily originates from the refined grain structure induced by cold rolling and annealing.The presence of coherent sphericalγ'precipitates(L1_(2)phases)and Al/Ti-rich precipitates at the grain boundaries,coupled with increased lattice defects such as dislocations,stacking faults,and ultrafine deformation twins,further contribute to the property’s improvement.Our study highlights the potential of SLM in producing high-strength and ductile MEA with coherent L1_(2)nanoprecipitates,which can be further optimized through subsequent rolling and annealing processes.These findings offer valuable insights for the development of high-performance alloys for future engineering applications.展开更多
Rational designing of one-dimensional(1D)magnetic alloy to facilitate electromagnetic(EM)wave attenuation capability in low-frequency(2-6 GHz)microwave absorption field is highly desired but remains a significant chal...Rational designing of one-dimensional(1D)magnetic alloy to facilitate electromagnetic(EM)wave attenuation capability in low-frequency(2-6 GHz)microwave absorption field is highly desired but remains a significant challenge.In this study,a composite EM wave absorber made of a FeCoNi medium-entropy alloy embedded in a 1D carbon matrix framework is rationally designed through an improved electrospinning method.The 1D-shaped FeCoNi alloy embedded composite demonstrates the high-density and continuous magnetic network using off-axis electronic holography technique,indicating the excellent magnetic loss ability under an external EM field.Then,the in-depth analysis shows that many factors,including 1D anisotropy and intrinsic physical features of the magnetic medium-entropy alloy,primarily contribute to the enhanced EM wave absorption performance.Therefore,the fabricated EM wave absorber shows an increasing effective absorption band of 1.3 GHz in the low-frequency electromagnetic field at an ultrathin thickness of 2 mm.Thus,this study opens up a new method for the design and preparation of high-performance 1D magnetic EM absorbers.展开更多
Undercooling of ternary CoCrNimediumentropy alloy(MEA)was achieved by molten glass fluxing method.The influence of undercooling on microstructure and mechanical properties of was investigated.The microstructure change...Undercooling of ternary CoCrNimediumentropy alloy(MEA)was achieved by molten glass fluxing method.The influence of undercooling on microstructure and mechanical properties of was investigated.The microstructure changes during the undercooling process identified by transmission electron microscope and scanning electron microscope shows that the grain size and intergranular phase all change after the undercooling treatment.The yield strength of the ternary MEAincreased significantly after undercooling treatment,which attribute to the refined grain size and the formation of the new phase.Undercooling method can be used as a potential method to modify the microstructure and improve the mechanical properties of MEAs.展开更多
Incorporating four cations into a single-phase oxide is beneficial for maintaining structural stability during Li+insertion/desertion because of the produced entropy-dominated phase stabilization effects. However,medi...Incorporating four cations into a single-phase oxide is beneficial for maintaining structural stability during Li+insertion/desertion because of the produced entropy-dominated phase stabilization effects. However,medium-entropy oxides exhibit inherently poor electron and ion conductivity. As such, in this work, a single-phase medium-entropy oxide of Ni_(x)Cu_(y)CozMn_(1-x-y-z)O(named as NCCM@oxides(H_(2))) is prepared by modified-NiCuCoMn alloy through the epitaxial-growing-based self-combustion and hydrogen reduction. During hydrogen reduction, some Cu ions are reduced to elemental Cu(defined as Cu^(0)),which is distributed among the metal oxides, while generating extensive oxygen vacancies around Cu. The synergetic effect between nanoporous metal-core oxide-shell structure and enriched oxygen/Cu^(0) vacancies greatly enhances the electronic/ionic conductivity. In addition, the lattice of single-phase quaternary metal oxides has the configuration entropy stability, which enables the rock-salt structure to remain stable during repeated conversion reactions. Benefiting from the above-mentioned merits, the anodeforLi-ionbatterieswithentropy-stabled NCCM@oxides(H_(2)) composite shows a high specific capacity of 699 mAh·g^(-1) at 0.1 A·g^(-1) and ultra-stable cycling stability, which maintains 618 and 489 mAh·g^(-1) at 0.1 and 1.0 A·g^(-1) after 200 cycles, respectively. This is the first use of this novel and simple strategy for modifying medium-entropy oxides, which paves the way for the development of high-entropy oxides as high-performance electrodes.展开更多
In this work,we designed a novel NiCoCr-based medium-entropy alloy(MEA)strengthened by coher-ent L12-nanoparticles,i.e.,(NiCoCr)92 Al 6 Ta 2(at.%).The strengthening and deformation mechanisms of the material and the c...In this work,we designed a novel NiCoCr-based medium-entropy alloy(MEA)strengthened by coher-ent L12-nanoparticles,i.e.,(NiCoCr)92 Al 6 Ta 2(at.%).The strengthening and deformation mechanisms of the material and the coarsening kinetics of the coherent precipitates were systematically investigated.The results indicated that giant precipitation hardening and its synergy with other strengthening contributors confer on the aged material a yield strength as high as 1.0 GPa.Moreover,a unique particle-features-dependent plasticity mechanism was revealed in this alloy.That is,the alloy with a lower volume frac-tion,denser distribution,and finer particles mainly deformed by dislocation planar slip,otherwise,stack-faults-mediated plasticity was favored,rationalized by the cooperative/competitive effect of stack-fault energy,spatial confinement,and applied stress.Furthermore,the coarsening behavior of precipitate fol-lowed a modified Lifshitz-Slyozov-Wagner(LSW)model,and the nanoparticles displayed remarkably su-perior thermal stability compared to most traditional superalloys and reported multicomponent alloys.The superb coarsening resistance of precipitate originated from the coupled effect of intrinsic sluggish diffusion in multi-principal alloys and the dual-roles of Ta species as a precipitate stabilizer.This work provides a new pathway to develop strong-yet-ductile multicomponent alloys as promising candidates for high-temperature applications.展开更多
High(or medium)-entropy alloys(H/MEAs)are complex concentrated solid solutions prone to develop the chemical short-range orders(CSROs),as an indispensable structural constituent to make H/MEAs essentially different fr...High(or medium)-entropy alloys(H/MEAs)are complex concentrated solid solutions prone to develop the chemical short-range orders(CSROs),as an indispensable structural constituent to make H/MEAs essentially different from the traditional alloys.The CSROs are predicted to play roles in dislocation behaviors and mechanical properties.So far,the image of CSROs is built up by the theoretical modeling and computational simulations in terms of the conventional concept,i.e.,the preference/avoidance of elemental species to satisfy the short-ranged ordering in the first and the next couple of nearest-neighbor atomic shells.In these simulated CSROs,however,the structural image is missing on the atomic scale,even though the lattice periodicity does not exist in the CSROs.Further,it is pending as to the issues if and what kind of CSRO may be formed in a specific H/MEA.All these are ascribed to the challenge of experimentally seeing the CSROs.Until recently,the breakthrough does not appear to convincingly identify the CSROs in the H/MEAs by using the state-of-the-art transmission electron microscope.To be specific,the electron diffractions provide solid evidence to doubtlessly ascertain CSROs.The structure motif of CSROs is then constructed,showing both the lattice structure and species ordering occupation,along with the stereoscopic topography of the CSRO.It is suggested that the CSROs,as the first landscape along the path of development of the local chemical ordering,offer one more route to substantially develop the ordered structure on the atomic scale in the H/MEAs,parallel to the existing grain-leveled microstructure.The findings of CSROs make a step forward to understand the CSROs-oriented relationship between the microstructure and mechanical properties.This review focuses on the recent progress mainly in the experimental aspects of the identification,structure motif,and mechanical stability in CSROs,along with the chemical medium-range orders as the growing CSROs。展开更多
Here we report a TiHfNbTa bulk medium-entropy alloy(MEA)superconductor crystallized in the body-centered cubic structure with the unit cell parameter a=3.35925?,which is synthesized by an arc melting method.Supercondu...Here we report a TiHfNbTa bulk medium-entropy alloy(MEA)superconductor crystallized in the body-centered cubic structure with the unit cell parameter a=3.35925?,which is synthesized by an arc melting method.Superconducting properties of the TiHfNbTa are studied by employing magnetic susceptibility,resistivity,and specific heat measurements.Experimental results show a bulk superconducting transition temperature(Tc)of around 6.75 K.The lower and upper critical fields for TiHfNbTa are45.8 m T and 10.46 T,respectively.First-principles calculations show that the d electrons of Ti,Hf,Nb,and Ta are the main contribution to the total density of states near the Fermi level.Our results indicate that the superconductivity is a conventional swave type with extremely strong coupling(△C_(el)/γ_(n)T_(c)=2.88,2△_(0)/k_(B)T_(c)=5.02,and λ_(ep)=2.77).The extremely strong coupling behavior in the s-wave type Ti Hf Nb Ta MEA superconductor is unusual because it generally happens in cuprates,pnictides,and other unconventional superconductors.展开更多
A novel cobalt-free oxide dispersion strengthened(ODS)equiatomic FeCrNi medium entropy alloy(MEA)was successfully fabricated through mechanical alloying and hot extrusion(HE).The ODS FeCrNi MEA is composed of a single...A novel cobalt-free oxide dispersion strengthened(ODS)equiatomic FeCrNi medium entropy alloy(MEA)was successfully fabricated through mechanical alloying and hot extrusion(HE).The ODS FeCrNi MEA is composed of a single face-centered cubic(FCC)matrix,in which highly dispersed oxide nanoparticles,including Y_(2)Ti_(2)O_(7),Y_(2)TiO_(5) and Y_(2)O_(3),are uniformly distributed.Compared with the FeCrNi MEA,the ODS FeCrNi MEA exhibits the improved yield strength(1120 MPa)and ultimate tensile strength(1274 MPa)with adequate ductility retention(12.1%).Theoretical analysis of the strengthening mechanism indicates that the high strength is mainly attributed to the grain-boundary strengthening caused by fine grains and the precipitation strengthening resulted from the oxide nanoparticles.Meanwhile,the matrix that easily activates mechanical twinning during the deformation process is the main reason to ensure moderate ductility.In addition,the introduction of high-density oxide nanoparticles can disperse the defect distri-bution and suppress the defect growth and irradiation-induced segregation,leading to the excellent irra-diation resistance.These findings provide innovative guidance for the development of high-performance structural materials for future nuclear energy applications with balanced strength and ductility.展开更多
The additive manufacturing of multi-principal element alloys has remarkable potential for industrial ap-plications.In this study,a(CoCrNi)_(94)Al_(3)Ti_(3)medium-entropy alloy(MEA)with adequate strength-ductility syne...The additive manufacturing of multi-principal element alloys has remarkable potential for industrial ap-plications.In this study,a(CoCrNi)_(94)Al_(3)Ti_(3)medium-entropy alloy(MEA)with adequate strength-ductility synergy was prepared via laser powder bed fusion.The microstructural evolution,mechanical property,and deformation mechanisms of the MEA were investigated after post annealing for a short period(0.5 h)at a temperature range of 773-1373 K using various microstructural characterization techniques and quantitative analysis.The static recrystallization temperature of the(CoCrNi)_(94)Al_(3)Ti_(3)MEA ranged from 973 to 1073 K.The average grain size first decreased and then increased,while the dislocation den-sity persistently decreased and texture gradually weakened with increasing annealing temperature.Cr-richσ-phase precipitates formed after 1073 K and then gradually dissolved at 1373 K,while Ni,Al,and Ti elements were aggregated to form a small amount of fine L1_(2)coherent precipitates with an aver-age diameter of approximately 70 nm at 1373 K.The evolution of the dislocation density,grain size,and precipitates significantly influenced the propensity of deformation twins and stacking faults,which consequently affected the strain hardening behavior and mechanical properties.The quantitative calcu-lation of strengthening mechanisms showed that dislocation strengthening played a dominant role at annealing temperatures below 1073 K,and it significantly weakened at 1373 K.Precipitation and grain boundary strengthening both markedly increased owing to the formation of precipitation particles and recrystallization-induced grain refinement after annealing at 1073 K.展开更多
The coarsening-grained single-phase face-centered cubic(fcc)medium-entropy alloys(MEAs)normally exhibit insufficient strength for some engineering applications.Here,superior mechanical properties with ultimate tensile...The coarsening-grained single-phase face-centered cubic(fcc)medium-entropy alloys(MEAs)normally exhibit insufficient strength for some engineering applications.Here,superior mechanical properties with ultimate tensile strength of 1.6 GPa and fracture strain of 13.1%at ambient temperature have been achieved in a(CoCrNi)_(94)Ti_(3)Al_(3)MEA by carefully architecting the multi-scale heterogeneous structures.Electron microscopy characterization indicates that the superior mechanical properties mainly originated from the favorable heterogeneous fcc matrix(1-40μm)and the coherent sphericalγ’precipitates(10-100 nm),together with a high number density of crystalline defects(2-10 nm),including dislocations,small stacking faults,Lomer-Cottrell locks,and ultrafine deformation twins.展开更多
To improve the yield strength of metallic materials at low temperatures,a strategy of combining the calculation of phase diagrams(CALPHAD)technique with the overall valence electron concentration(OVEC)principle is app...To improve the yield strength of metallic materials at low temperatures,a strategy of combining the calculation of phase diagrams(CALPHAD)technique with the overall valence electron concentration(OVEC)principle is applied,and a Ni_(2)CoCrNb_(0.2)medium-entropy alloy(MEA)with D022 superlattice(noted as theγ″phase)is designed.Bulk MEA samples without defects were successfully fabricated using laser additive manufacturing(AM),followed by solution treatment at 1200℃for 1 h and then aging at 650℃for 120 h.The nanoscaleγ″phase precipitated.The tensile results indicated that the MEA had superior yield strengths of∼1180 MPa and∼1320 MPa and tensile strengths of∼1335 MPa and∼1552 MPa at 293 K and 77 K,respectively.The yield strength obtained was superior to that of currently reported medium/high-entropy alloys and typical advanced cryogenic steel.The mechanical properties of the Ni_(2)CoCrNb_(0.2)MEA demonstrated a strong temperature dependence,and the increased yield strength was mainly attributed to the increase in lattice friction stress at low temperatures.This research provides a new strategy for producing materials with ultrastrong cryogenic yield strengths by AM.展开更多
The development of multi-principal element alloys(MPEAs,also called as high-or medium-entropy al-loys,HEAs/MEAs)provides tremendous possibilities for materials innovation.However,designing MPEAs with desirable mechani...The development of multi-principal element alloys(MPEAs,also called as high-or medium-entropy al-loys,HEAs/MEAs)provides tremendous possibilities for materials innovation.However,designing MPEAs with desirable mechanical properties confronts great challenges due to their vast composition space.In this work,we provide an essential criterion to efficiently screen the CoCrNi MEAs with outstanding strength-ductility combinations.The negative Gibbs free energy difference△E_(FCC-BCC)between the face-centered cubic(FCC)and body-centered cubic(BCC)phases,the enhancement of shear modulus G and the decline of stacking fault energy(SFE)γ_(isf)are combined as three requisites to improve the FCC phase stability,yield strength,deformation mechanisms,work-hardening ability and ductility in the criterion.The effects of chemical composition on△E_(FCC-BCC),G andγisf were investigated with the first principles calculations for Co_(x)Cr_(33)Ni_(67-x),Co_(33)Cr_(y)Ni_(67-y)and Co_(z)Cr_(66-z)Ni_(34)(0≤x,y≤67 and 0≤z≤66)alloys.Based on the essential criterion and the calculation results,the composition space that displays the neg-ative Gibbs free energy difference△E_(FCC-BCC),highest shear modulus G and lowest SFEγ_(isf)was screened with the target on the combination of high strength and excellent ductility.In this context,the optimal composition space of Co-Cr-Ni alloys was predicted as 60 at.%-67 at.%Co,30 at.%-35 at.%Cr and 0 at.%-6 at.%Ni,which coincides well with the previous experimental evidence for Co_(55)Cr_(40)Ni_(5)alloys.The valid-ity of essential criterion is further proved after systematic comparison with numerous experimental data,which demonstrates that the essential criterion can provide significant guidance for the quick exploitation of strong and ductile MEAs and promote the development and application of MPEAs.展开更多
A series of Alx(CoCrNi)100-x(x=0-21 at.%)medium-entropy alloys(MEAs)were designed and prepared to investigate the effects of Al addition on the microstructures and tensile properties.The results reveal that the lattic...A series of Alx(CoCrNi)100-x(x=0-21 at.%)medium-entropy alloys(MEAs)were designed and prepared to investigate the effects of Al addition on the microstructures and tensile properties.The results reveal that the lattice structure changes from the initial single FCC structure(x<10 at.%),to the FCC and disordered BCC structures(x=10 and 11 at.%),then to the FCC and BCC/B2 structures(11<x<21 at.%),finally to the duplex BCC/B2 structures(x≥21 at.%)with increasing Al addition.Consistent with microstructures,significant changes also occur in the corresponding tensile properties with Al addition,showing that the strength increases and the ductility decreases with increasing Al addition.Especially,the Al-15 MEA exhibits an acceptable balance of strength and ductility.Furthermore,the mechanism of microstructure evolution and the correlation between microstructures and tensile properties were also discussed and clarified.展开更多
基金financially supported by the National Nature Science Foundation of China(51775204 and 51604222)the Analytical and Testing Center,HUSTChina Postdoctoral Science Foundation Funded Project
文摘Cast CrCoNiAIx (x=0-1.2) medium-entropy alloys (MEAs) were produced by arc melting and flip cast to investigate the alloying effect of AI addition on the microstructure, phase constituent and mechanical properties. The crystal structure changes from an initial face-centered cubic (FCC) to duplex FCC and body-centered cubic (BCC) and finally a single BCC with increasing AI content. In the duplex region, FCC and BCC phases form under a eutectic reaction in the interdendrite region. In the single BCC region, the dendrites transform to ordered B2 and disordered A2 BCC phases resulting from spinodal decomposition. Corresponding to their phase constituents, yield strength increases accompanied with an elongation reduction with increasing AI addition. A very interesting phenomenon of very weak ordered FCC (001) spots appearing in AI-0.4 alloy was observed, indicating a local ordering of FCC phase. The changes of fracture surfaces after the tensile deformation are also corresponding to the variations in mechanical properties.
基金Project(2016YFB0700300)supported by the National Key Research and Development Program of China。
文摘In this study,non-equiatomic Fe_(70)Co_(7.5)Cr_(7.5)Ni_(7.5)V_(7.5) medium-entropy alloys(MEAs)with different carbon contents were prepared via mechanical ball-milling,cold pressing and vacuum sintering.The microstructural evolution,mechanical properties and wear resistance of the MEAs were investigated.Fe_(70)Co_(7.5)Cr_(7.5)Ni_(7.5)V_(7.5) exhibited a bodycentered cubic(bcc)structure withσphase precipitation.After adding 4 at%and 8 at%carbon,the phase composition of the alloys was transformed to bcc+MC+σand bcc+MC+M_(23)C_(6),respectively.The mechanical properties and wear resistance were observed to be significantly enhanced by the formation of carbides.Increasing the carbon content,the corresponding bending strength and hardness increased from 1520 to 3245 MPa and HRC 57.2 to HRC 61.4,respectively.Further,the dominant wear mechanism changed from the adhesion wear to the abrasion wear.Owing to the evenly distributed carbides and precipitated nanocarbides,Fe_(64.4)Co_(6.9)Cr_(6.9)Ni_(6.9)V_(6.9)C_(8) revealed an extremely low specific wear rate of 1.3×10^(−6) mm_(2)/(N·m)under a load of 10 N.
文摘The tribological properties especially wear and hardness of a Ti-Al-V alloy with nitrogen implantation (energy 60 keV) were investigated. The implantation was carried out at fluences range from 1×1016 to 4×1017 ions/cm2. Glancing angle X-ray diffraction (GAXRD) and X-ray photoelectron spectroscopy (XPS) analyses were performed to obtain surface characterization of the implanted sample. The unimplanted and implanted samples were also annealed at 600 ℃ in order to understand the influence of annealing on the tribological properties of Ti-Al-V. The hardness shows significant improvement at the higher fluence. After annealing at 600 ℃, the friction coefficient exhibits a relative decrease for the nitrogen-implanted samples. In addition, the wear rates of the implanted samples exhibits a great decrease after annealing at 600 ℃. Nature of the surface and reason for the variation and improvement in wear resistance were discussed in detail.
基金supported by the Key-Area Research and Development Program of Guangdong Province(Grant No.2018B090905002)the National Natural Science Foundation of China(Grant No.52103360)the Basic Research Foundation of Guangzhou City(Grant No.201804020071).
文摘Microstructure and mechanical properties of non-equiatomic(CuNi)_(100-x)Co_(x)(x=15,20,25 and 30,at.%)medium-entropy alloys(MEAs)prepared by vacuum arc-melting were investigated.Results show that all the as-cast MEAs exhibit dual face-centered cubic(fcc)solid-solution phases with identical lattice constant,showing typical dendrite structure consisting of(Ni,Co)-rich phase in dendrites and Cu-rich phase in inter-dendrites.The positive enthalpy of mixing among Cu and Ni-Co elements is responsible for the segregation of Cu.With the increase of Co content,the volume fraction of(Ni,Co)-rich phase increases while the Cu-rich phase decreases,resulting in an increment of yield strength and a decrement of elongation for the(CuNi)_(100-x)Co_(x) MEAs.Nano-indentation test results show a great difference of microhardness between the two fcc phases of the MEAs.The measured microhardness value of the(Ni,Co)-rich phase is almost twofold as compared to that of the Cu-rich phase in all the(CuNi)_(100-x)Co_(x) MEAs.During the deformation of the MEAs,the Cu-rich phase bears the main plastic strain,whereas the(Ni,Co)-rich phase provides more pronounced strengthening.
基金The authors would like to thank the National Science Foundation of China(NSFC,Grants 51671020)Dongguan Yi’an Technology Co.,Ltd.for the financial support.
文摘A series of as-cast lightweight multicomponent alloys Al(86-x)Mg10Zn2Cu2Six(x=0,0.3,0.6,0.9,1.2 at.%)were prepared by a vacuum induction furnace with a steel die.With the addition of Si,the reticular white Al-Cu phase deposited were gradually replaced by the gray eutectic Mg-Si phase,while the compressive strength of the alloys increases first and then decreases slowly.It is particularly noteworthy that the compression plasticity also exhibits this trend.When the Si content is 0.9 at.%,the compressive strength reaches its maximum at 779.11 MPa and the compressive plasticity reaches 20.91%.The effect of the addition of Si on the serration behavior of alloy was also studied;we found that the addition of Si introduces a new MgSi phase,and with the change of Si is significantly affects the morphology of the precipitated phase,which affects the serration behavior of the alloys.The comprehensive mechanical properties of the alloy are optimal at the critical point where the serration behavior disappears.In this work,we have provided a method and a composition for the preparation of a low-cost,high-strength,lightweight medium-entropy alloys.
基金financially supported by the National Natural Science Foundation of China (No. 51571118)。
文摘Designing strong, yet ductile, and body-centered cubic(BCC) medium-entropy alloys(MEAs) remains to be a challenge nowadays.In this study, the strength–ductility trade-off of Ni_(0.6)CoFe_(1.4)MEAs was tackled via introducing a BCC + face-centered cubic(FCC) dual-phase microstructure. Ni_(0.6)CoFe_(1.4)Nbx(x = 0, 0.05, 0.08, 0.10, and 0.15, in molar ratio) MEAs were prepared using vacuum induction melting. Results show that the new alloy is composed of BCC plus FCC dual phases featuring a network-like structure, and the BCC phase is the main phase in this alloy system. Moreover, the Nb0.10 MEA shows high strength and respectable tensile ductility, representing the best combination of the strength and fracture elongation among the alloys studied here. The remarkable strength of the Nb0.10 MEA is attributed to the combined effect of the solid solution strengthening, the precipitation hardening effect and the interface strengthening effect.
基金financially supported by the National Natural Science Foundation of China(Grant No.11775074)the Science and Technology Program of Hunan Province,China(Grant No.2019TP1014)
文摘High-entropy alloys(HEAs)and medium-entropy alloys(MEAs)have attracted a great deal of attention for developing nuclear materials because of their excellent irradiation tolerance.Herein,formation and evolution of radiation-induced defects in Ni Co Fe MEA and pure Ni are investigated and compared using molecular dynamics simulation.It is observed that the defect recombination rate of ternary Ni Co Fe MEA is higher than that of pure Ni,which is mainly because,in the process of cascade collision,the energy dissipated through atom displacement decreases with increasing the chemical disorder.Consequently,the heat peak phase lasts longer,and the recombination time of the radiation defects(interstitial atoms and vacancies)is likewise longer,with fewer deleterious defects.Moreover,by studying the formation and evolution of dislocation loops in Ni-Co-Fe alloys and Ni,it is found that the stacking fault energy in Ni-Co-Fe decreases as the elemental composition increases,facilitating the formation of ideal stacking fault tetrahedron structures.Hence,these findings shed new light on studying the formation and evolution of radiation-induced defects in MEAs.
基金This work is supported by the National Natural Science Foundation of China(Nos.51971180,52271037,and 51971179)the Guangdong Provincial Science and Technology Program,China(No.2019B090905009)+2 种基金the Shaanxi Provincial Science and Technology Program,China(No.2023-JC-ZD-23)the Foreign Senior Talents Program of Guangdong Province,China,and the Fundamental Research Funds for the Central Universities of China(No.D5000230131)the Shenzhen Fundamental Research Program(Grant No.JCYJ20210324122203010).The authors would like to express their sincere gratitude to Dr.W.Loeser and Dr.V.Y.Zadorozhnyy for invaluable discussion.
文摘The L1_(2)-strengthened Co_(34)Cr_(32)Ni_(27)Al_(4)Ti_(3)medium-entropy alloy(MEA)with precipitations of grain boundaries has been developed through selective laser melting(SLM)followed by cold rolling and annealing,exhibiting excellent strength-ductility synergy.The as-printed alloy exhibits low yield strength(YS)of~384 MPa,ultimate tensile strength(UTS)of~453 MPa,and uniform elongation(UE)of 1.5%due to the existence of the SLM-induced defects.After cold rolling and annealing,the YS,UTS,and UE are significantly increased to~739 MPa,~1230 MPa,and~47%,respectively.This enhancement primarily originates from the refined grain structure induced by cold rolling and annealing.The presence of coherent sphericalγ'precipitates(L1_(2)phases)and Al/Ti-rich precipitates at the grain boundaries,coupled with increased lattice defects such as dislocations,stacking faults,and ultrafine deformation twins,further contribute to the property’s improvement.Our study highlights the potential of SLM in producing high-strength and ductile MEA with coherent L1_(2)nanoprecipitates,which can be further optimized through subsequent rolling and annealing processes.These findings offer valuable insights for the development of high-performance alloys for future engineering applications.
基金supported by the National Natural Science Foundation of China(Nos.51725101,11727807,51672050,61790581,22088101)the Ministry of Science and Technology of China(973 Project Nos.2018YFA0209102 and 2021YFA1200600)Infrastructure and Facility Construction Project of Zhejiang Laboratory.
文摘Rational designing of one-dimensional(1D)magnetic alloy to facilitate electromagnetic(EM)wave attenuation capability in low-frequency(2-6 GHz)microwave absorption field is highly desired but remains a significant challenge.In this study,a composite EM wave absorber made of a FeCoNi medium-entropy alloy embedded in a 1D carbon matrix framework is rationally designed through an improved electrospinning method.The 1D-shaped FeCoNi alloy embedded composite demonstrates the high-density and continuous magnetic network using off-axis electronic holography technique,indicating the excellent magnetic loss ability under an external EM field.Then,the in-depth analysis shows that many factors,including 1D anisotropy and intrinsic physical features of the magnetic medium-entropy alloy,primarily contribute to the enhanced EM wave absorption performance.Therefore,the fabricated EM wave absorber shows an increasing effective absorption band of 1.3 GHz in the low-frequency electromagnetic field at an ultrathin thickness of 2 mm.Thus,this study opens up a new method for the design and preparation of high-performance 1D magnetic EM absorbers.
基金The support of this work was fromNational Key R&D Program of China(Grant No:2022YFA1603800)the National Natural Science Foundation of China(Grant No:12274362).
文摘Undercooling of ternary CoCrNimediumentropy alloy(MEA)was achieved by molten glass fluxing method.The influence of undercooling on microstructure and mechanical properties of was investigated.The microstructure changes during the undercooling process identified by transmission electron microscope and scanning electron microscope shows that the grain size and intergranular phase all change after the undercooling treatment.The yield strength of the ternary MEAincreased significantly after undercooling treatment,which attribute to the refined grain size and the formation of the new phase.Undercooling method can be used as a potential method to modify the microstructure and improve the mechanical properties of MEAs.
基金financially supported by the National Natural Science Foundation of China (Nos. 52271011, 52102291 and 51701142)。
文摘Incorporating four cations into a single-phase oxide is beneficial for maintaining structural stability during Li+insertion/desertion because of the produced entropy-dominated phase stabilization effects. However,medium-entropy oxides exhibit inherently poor electron and ion conductivity. As such, in this work, a single-phase medium-entropy oxide of Ni_(x)Cu_(y)CozMn_(1-x-y-z)O(named as NCCM@oxides(H_(2))) is prepared by modified-NiCuCoMn alloy through the epitaxial-growing-based self-combustion and hydrogen reduction. During hydrogen reduction, some Cu ions are reduced to elemental Cu(defined as Cu^(0)),which is distributed among the metal oxides, while generating extensive oxygen vacancies around Cu. The synergetic effect between nanoporous metal-core oxide-shell structure and enriched oxygen/Cu^(0) vacancies greatly enhances the electronic/ionic conductivity. In addition, the lattice of single-phase quaternary metal oxides has the configuration entropy stability, which enables the rock-salt structure to remain stable during repeated conversion reactions. Benefiting from the above-mentioned merits, the anodeforLi-ionbatterieswithentropy-stabled NCCM@oxides(H_(2)) composite shows a high specific capacity of 699 mAh·g^(-1) at 0.1 A·g^(-1) and ultra-stable cycling stability, which maintains 618 and 489 mAh·g^(-1) at 0.1 and 1.0 A·g^(-1) after 200 cycles, respectively. This is the first use of this novel and simple strategy for modifying medium-entropy oxides, which paves the way for the development of high-entropy oxides as high-performance electrodes.
基金supported by the National Natural Science Foundation of China(Nos.92163201,U2067219,51722104,51790482,and 51761135031)the National Key Research and Devel-opment Program of China(No.2017YFA0700701)+1 种基金the 111 Project 2.0 of China(No.BP2018008)the Fundamental Research Funds for the Central Universities(No.xtr022019004).
文摘In this work,we designed a novel NiCoCr-based medium-entropy alloy(MEA)strengthened by coher-ent L12-nanoparticles,i.e.,(NiCoCr)92 Al 6 Ta 2(at.%).The strengthening and deformation mechanisms of the material and the coarsening kinetics of the coherent precipitates were systematically investigated.The results indicated that giant precipitation hardening and its synergy with other strengthening contributors confer on the aged material a yield strength as high as 1.0 GPa.Moreover,a unique particle-features-dependent plasticity mechanism was revealed in this alloy.That is,the alloy with a lower volume frac-tion,denser distribution,and finer particles mainly deformed by dislocation planar slip,otherwise,stack-faults-mediated plasticity was favored,rationalized by the cooperative/competitive effect of stack-fault energy,spatial confinement,and applied stress.Furthermore,the coarsening behavior of precipitate fol-lowed a modified Lifshitz-Slyozov-Wagner(LSW)model,and the nanoparticles displayed remarkably su-perior thermal stability compared to most traditional superalloys and reported multicomponent alloys.The superb coarsening resistance of precipitate originated from the coupled effect of intrinsic sluggish diffusion in multi-principal alloys and the dual-roles of Ta species as a precipitate stabilizer.This work provides a new pathway to develop strong-yet-ductile multicomponent alloys as promising candidates for high-temperature applications.
基金supported by the National Key Research and Development Program of the Ministry of Science and Technology of China(No.2019YFA0209902)the National Natural Science Foundation of China(Nos.11998102,11972350,and 11790293)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB22040503).
文摘High(or medium)-entropy alloys(H/MEAs)are complex concentrated solid solutions prone to develop the chemical short-range orders(CSROs),as an indispensable structural constituent to make H/MEAs essentially different from the traditional alloys.The CSROs are predicted to play roles in dislocation behaviors and mechanical properties.So far,the image of CSROs is built up by the theoretical modeling and computational simulations in terms of the conventional concept,i.e.,the preference/avoidance of elemental species to satisfy the short-ranged ordering in the first and the next couple of nearest-neighbor atomic shells.In these simulated CSROs,however,the structural image is missing on the atomic scale,even though the lattice periodicity does not exist in the CSROs.Further,it is pending as to the issues if and what kind of CSRO may be formed in a specific H/MEA.All these are ascribed to the challenge of experimentally seeing the CSROs.Until recently,the breakthrough does not appear to convincingly identify the CSROs in the H/MEAs by using the state-of-the-art transmission electron microscope.To be specific,the electron diffractions provide solid evidence to doubtlessly ascertain CSROs.The structure motif of CSROs is then constructed,showing both the lattice structure and species ordering occupation,along with the stereoscopic topography of the CSRO.It is suggested that the CSROs,as the first landscape along the path of development of the local chemical ordering,offer one more route to substantially develop the ordered structure on the atomic scale in the H/MEAs,parallel to the existing grain-leveled microstructure.The findings of CSROs make a step forward to understand the CSROs-oriented relationship between the microstructure and mechanical properties.This review focuses on the recent progress mainly in the experimental aspects of the identification,structure motif,and mechanical stability in CSROs,along with the chemical medium-range orders as the growing CSROs。
基金supported by the National Natural Science Foundation of China(Grant Nos.12274471,and 11922415)the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2022A1515011168,and 2019A1515011718)+6 种基金the Key Research and Development Program of Guangdong Province,China(Grant No.2019B110209003)supported by the Foreign Young Talents Program of China(Grant No.22KW041C211)supported by the Key-Area Research and Development Program of Guangdong Province(Grant No.2020B0101340002)supported by the NKRDPC(Grant Nos.2022YFA1402802,and 2018YFA0306001)the National Natural Science Foundation of China(Grant Nos.11974432,and 92165204)the Leading Talent Program of Guangdong Special Projects(Grant No.201626003)the Shenzhen International Quantum Academy(Grant No.SIQA202102)。
文摘Here we report a TiHfNbTa bulk medium-entropy alloy(MEA)superconductor crystallized in the body-centered cubic structure with the unit cell parameter a=3.35925?,which is synthesized by an arc melting method.Superconducting properties of the TiHfNbTa are studied by employing magnetic susceptibility,resistivity,and specific heat measurements.Experimental results show a bulk superconducting transition temperature(Tc)of around 6.75 K.The lower and upper critical fields for TiHfNbTa are45.8 m T and 10.46 T,respectively.First-principles calculations show that the d electrons of Ti,Hf,Nb,and Ta are the main contribution to the total density of states near the Fermi level.Our results indicate that the superconductivity is a conventional swave type with extremely strong coupling(△C_(el)/γ_(n)T_(c)=2.88,2△_(0)/k_(B)T_(c)=5.02,and λ_(ep)=2.77).The extremely strong coupling behavior in the s-wave type Ti Hf Nb Ta MEA superconductor is unusual because it generally happens in cuprates,pnictides,and other unconventional superconductors.
基金This work was supported by the National Natural Science Foun-dation of China(Nos.52020105013 and 52104365)the US National Science Foundation(Nos.DMR 1611180 and 1809640)with program directors,Drs.J.Yang,G.Shiflet,and D.Farkas.
文摘A novel cobalt-free oxide dispersion strengthened(ODS)equiatomic FeCrNi medium entropy alloy(MEA)was successfully fabricated through mechanical alloying and hot extrusion(HE).The ODS FeCrNi MEA is composed of a single face-centered cubic(FCC)matrix,in which highly dispersed oxide nanoparticles,including Y_(2)Ti_(2)O_(7),Y_(2)TiO_(5) and Y_(2)O_(3),are uniformly distributed.Compared with the FeCrNi MEA,the ODS FeCrNi MEA exhibits the improved yield strength(1120 MPa)and ultimate tensile strength(1274 MPa)with adequate ductility retention(12.1%).Theoretical analysis of the strengthening mechanism indicates that the high strength is mainly attributed to the grain-boundary strengthening caused by fine grains and the precipitation strengthening resulted from the oxide nanoparticles.Meanwhile,the matrix that easily activates mechanical twinning during the deformation process is the main reason to ensure moderate ductility.In addition,the introduction of high-density oxide nanoparticles can disperse the defect distri-bution and suppress the defect growth and irradiation-induced segregation,leading to the excellent irra-diation resistance.These findings provide innovative guidance for the development of high-performance structural materials for future nuclear energy applications with balanced strength and ductility.
基金This work was financially supported by the National Natural Science Foundation of China(nos.52105144 and 51725503)the Shanghai Super Postdoctoral Incentive Plan(no.2020134)the China Postdoctoral Science Foundation(no.2021M701201).
文摘The additive manufacturing of multi-principal element alloys has remarkable potential for industrial ap-plications.In this study,a(CoCrNi)_(94)Al_(3)Ti_(3)medium-entropy alloy(MEA)with adequate strength-ductility synergy was prepared via laser powder bed fusion.The microstructural evolution,mechanical property,and deformation mechanisms of the MEA were investigated after post annealing for a short period(0.5 h)at a temperature range of 773-1373 K using various microstructural characterization techniques and quantitative analysis.The static recrystallization temperature of the(CoCrNi)_(94)Al_(3)Ti_(3)MEA ranged from 973 to 1073 K.The average grain size first decreased and then increased,while the dislocation den-sity persistently decreased and texture gradually weakened with increasing annealing temperature.Cr-richσ-phase precipitates formed after 1073 K and then gradually dissolved at 1373 K,while Ni,Al,and Ti elements were aggregated to form a small amount of fine L1_(2)coherent precipitates with an aver-age diameter of approximately 70 nm at 1373 K.The evolution of the dislocation density,grain size,and precipitates significantly influenced the propensity of deformation twins and stacking faults,which consequently affected the strain hardening behavior and mechanical properties.The quantitative calcu-lation of strengthening mechanisms showed that dislocation strengthening played a dominant role at annealing temperatures below 1073 K,and it significantly weakened at 1373 K.Precipitation and grain boundary strengthening both markedly increased owing to the formation of precipitation particles and recrystallization-induced grain refinement after annealing at 1073 K.
基金This work was financially supported by the National Key Research and Development Program of China(No.2020YFB0311300ZL)the National Natural Science Foundation of China(No.52071343).
文摘The coarsening-grained single-phase face-centered cubic(fcc)medium-entropy alloys(MEAs)normally exhibit insufficient strength for some engineering applications.Here,superior mechanical properties with ultimate tensile strength of 1.6 GPa and fracture strain of 13.1%at ambient temperature have been achieved in a(CoCrNi)_(94)Ti_(3)Al_(3)MEA by carefully architecting the multi-scale heterogeneous structures.Electron microscopy characterization indicates that the superior mechanical properties mainly originated from the favorable heterogeneous fcc matrix(1-40μm)and the coherent sphericalγ’precipitates(10-100 nm),together with a high number density of crystalline defects(2-10 nm),including dislocations,small stacking faults,Lomer-Cottrell locks,and ultrafine deformation twins.
基金National Natural Science Foundation of China(No.52164044)the Natural Science Foundation of Guizhou Province of China(No.2022[053])+1 种基金the Talent growth plan of Guizhou education department of China(No.[2022]137)the Plan of Key Laboratory of Advanced Manufacturing Technology of the Ministry of Education of Guizhou University,China(No.GZUAMT2021KF[12]).
文摘To improve the yield strength of metallic materials at low temperatures,a strategy of combining the calculation of phase diagrams(CALPHAD)technique with the overall valence electron concentration(OVEC)principle is applied,and a Ni_(2)CoCrNb_(0.2)medium-entropy alloy(MEA)with D022 superlattice(noted as theγ″phase)is designed.Bulk MEA samples without defects were successfully fabricated using laser additive manufacturing(AM),followed by solution treatment at 1200℃for 1 h and then aging at 650℃for 120 h.The nanoscaleγ″phase precipitated.The tensile results indicated that the MEA had superior yield strengths of∼1180 MPa and∼1320 MPa and tensile strengths of∼1335 MPa and∼1552 MPa at 293 K and 77 K,respectively.The yield strength obtained was superior to that of currently reported medium/high-entropy alloys and typical advanced cryogenic steel.The mechanical properties of the Ni_(2)CoCrNb_(0.2)MEA demonstrated a strong temperature dependence,and the increased yield strength was mainly attributed to the increase in lattice friction stress at low temperatures.This research provides a new strategy for producing materials with ultrastrong cryogenic yield strengths by AM.
基金We sincerely acknowledge the support of the work by the Na-tional Natural Science Foundation of China(NSFC)(Nos.52130002,52071316,51871223,51771206 and 51571198)the Youth Innova-tion Promotion Association CAS(No.2021192)the KC Wong Education Foundation(No.GJTD-2020-09).
文摘The development of multi-principal element alloys(MPEAs,also called as high-or medium-entropy al-loys,HEAs/MEAs)provides tremendous possibilities for materials innovation.However,designing MPEAs with desirable mechanical properties confronts great challenges due to their vast composition space.In this work,we provide an essential criterion to efficiently screen the CoCrNi MEAs with outstanding strength-ductility combinations.The negative Gibbs free energy difference△E_(FCC-BCC)between the face-centered cubic(FCC)and body-centered cubic(BCC)phases,the enhancement of shear modulus G and the decline of stacking fault energy(SFE)γ_(isf)are combined as three requisites to improve the FCC phase stability,yield strength,deformation mechanisms,work-hardening ability and ductility in the criterion.The effects of chemical composition on△E_(FCC-BCC),G andγisf were investigated with the first principles calculations for Co_(x)Cr_(33)Ni_(67-x),Co_(33)Cr_(y)Ni_(67-y)and Co_(z)Cr_(66-z)Ni_(34)(0≤x,y≤67 and 0≤z≤66)alloys.Based on the essential criterion and the calculation results,the composition space that displays the neg-ative Gibbs free energy difference△E_(FCC-BCC),highest shear modulus G and lowest SFEγ_(isf)was screened with the target on the combination of high strength and excellent ductility.In this context,the optimal composition space of Co-Cr-Ni alloys was predicted as 60 at.%-67 at.%Co,30 at.%-35 at.%Cr and 0 at.%-6 at.%Ni,which coincides well with the previous experimental evidence for Co_(55)Cr_(40)Ni_(5)alloys.The valid-ity of essential criterion is further proved after systematic comparison with numerous experimental data,which demonstrates that the essential criterion can provide significant guidance for the quick exploitation of strong and ductile MEAs and promote the development and application of MPEAs.
基金supported by the National Natural Science Foundation of China(NSFC,Grant Nos.52071319 and 51971060)the Foundation for Outstanding Young Scholar sponsored by Institute of Metal Research(IMR),the Foundation for Outstanding Young Scholar sponsored by the Shenyang National Laboratory for Materials Science(L2019F23)the Fundamental Research Project of Shenyang National Laboratory for Materials Science(No.L2019R18).
文摘A series of Alx(CoCrNi)100-x(x=0-21 at.%)medium-entropy alloys(MEAs)were designed and prepared to investigate the effects of Al addition on the microstructures and tensile properties.The results reveal that the lattice structure changes from the initial single FCC structure(x<10 at.%),to the FCC and disordered BCC structures(x=10 and 11 at.%),then to the FCC and BCC/B2 structures(11<x<21 at.%),finally to the duplex BCC/B2 structures(x≥21 at.%)with increasing Al addition.Consistent with microstructures,significant changes also occur in the corresponding tensile properties with Al addition,showing that the strength increases and the ductility decreases with increasing Al addition.Especially,the Al-15 MEA exhibits an acceptable balance of strength and ductility.Furthermore,the mechanism of microstructure evolution and the correlation between microstructures and tensile properties were also discussed and clarified.