The effect of the amount of Sn on the formation of fcc phase in Ti-13 Ta-x Sn(x=3,6,9 and 12,at.%)alloys was studied.The alloys were synthesized by mechanical alloying using a planetary mill,jar and balls of stabilize...The effect of the amount of Sn on the formation of fcc phase in Ti-13 Ta-x Sn(x=3,6,9 and 12,at.%)alloys was studied.The alloys were synthesized by mechanical alloying using a planetary mill,jar and balls of stabilized yttrium.Using Rietveld refinement,it was found that the obtained fcc phase has crystallite size smaller than 10 nm and microstrain larger than 10-3.Both conditions are required to form an fcc phase in Ti-based alloys.For all samples,the microstructure of the fcc phase consists of equiaxial crystallites with sizes smaller than 10 nm.The largest presence of fcc phase in the studied Ti alloy was found with 6 at.%Sn,because this alloy exhibits the largest microstrain(1.5×10-2)and crystallite size of 6.5 nm.Experimental data reveal that a solid solution and an amorphous phase were formed during milling.The necessary conditions to promote the formation of solid solution and amorphous phases were determined using thermodynamic calculations.When the amount of Sn increases,the energy required to form an amorphous phase varies from approximately 10 to approximately-5 k J/mol for 3 and 12 at.%Sn,respectively.The thermodynamic calculations are in agreement with XRD patterns analysis and HRTEM results.展开更多
Ti-based alloys have been widely applied in the aerospace field,owing to their outstanding performance.Precision casting can be used to make integrated near-net-shape components with complex thin-walled structures,whi...Ti-based alloys have been widely applied in the aerospace field,owing to their outstanding performance.Precision casting can be used to make integrated near-net-shape components with complex thin-walled structures,which will further promote the engineering application of Ti-based alloys. In this paper,the research progress of Tibased alloys,e. g.,high-temperature Ti-based alloys,high-strength Ti-based alloys,TiAl-based alloys,Ti-based matrix composites,and their precision casting technologies are reviewed. In addition,the development directions of Tibased alloys are presented based on the application status of Ti-based alloys in the aerospace field.展开更多
A part of Al-Ti-Mo-Cr quaternary phase diagram is constructed for themicrostructure control of D0_(22)-Al_3Ti or its derivative, L1_2-(Al,Cr)_3Ti, -based alloys. It wasfound that quaternary bcc phase equilibrates with...A part of Al-Ti-Mo-Cr quaternary phase diagram is constructed for themicrostructure control of D0_(22)-Al_3Ti or its derivative, L1_2-(Al,Cr)_3Ti, -based alloys. It wasfound that quaternary bcc phase equilibrates with either D0_(22)-Al_3Ti or L1_2-(Al,Cr)_3Ti, orboth, exist in large compositional areas. The mechanical properties is strongly affected byprecipitates appearing, and presumably alloy microstructures.展开更多
A series of BaO-La2O3-B2O3(BLB) glass coats on the Ti-based alloy substrates were developed at different temperatures for different times. The BLB glasses were analyzed by differential thermal analysis(DTA) and therma...A series of BaO-La2O3-B2O3(BLB) glass coats on the Ti-based alloy substrates were developed at different temperatures for different times. The BLB glasses were analyzed by differential thermal analysis(DTA) and thermal mechanical analysis(TMA) to determine the crystallization temperature and coefficients of thermal expansion(CETs) of the glass. The tensile strength and microstructure of the glass coats were analyzed and the effects of the coating condition on the tensile strength and microstructure were discussed. The results show that the CETs of the borate glass at different temperatures match with those of Ti-based alloy,and the difference between the borate glass and Ti-based alloy at each temperature is below 5%. The spreading area in N2 atmosphere is much larger than that in air atmosphere,indicating that N2 atmosphere is helpful for the wetting of borate glass to Ti-based alloy. The tensile strength of the glass coats can reach as high as 28.42 MPa,meeting the requirements for the coat binder. With the increase of coating time,the tensile strength of coats increases firstly while then decreases. The coat prepared at 730 ℃ for 30 min is fairly smooth and complete,while the other coats contain lots of defects such as large or small uncoated region. It is believed that the coating temperature of 730 ℃ and coating time of 30 min are the proper coating conditions to prepare BLB glass coats.展开更多
An efficient and safe hydrogen storage method is one of the important links for the large-scale development of hydrogen in the future. Because of its low price and simple design, Ti-based hydrogen storage alloys are c...An efficient and safe hydrogen storage method is one of the important links for the large-scale development of hydrogen in the future. Because of its low price and simple design, Ti-based hydrogen storage alloys are considered to be suitable for practical applications. In this paper, we review the latest research on Ti-based hydrogen storage alloys. Firstly, the machine learning and density functional theory are introduced to provide theoretical guidance for the optimization of Ti-based hydrogen storage alloys. Then, in order to improve the hydrogen storage performance, we briefly introduce the research of AB type and AB2 type Ti-based alloys, focusing on doping elements and adaptive after treatment. Finally, suggestions for the future research and development of Ti-based hydrogen storage alloys are proposed. .展开更多
Based on experimental data,machine learning(ML) models for Young's modulus,hardness,and hot-working ability of Ti-based alloys were constructed.In the models,the interdiffusion and mechanical property data were hi...Based on experimental data,machine learning(ML) models for Young's modulus,hardness,and hot-working ability of Ti-based alloys were constructed.In the models,the interdiffusion and mechanical property data were high-throughput re-evaluated from composition variations and nanoindentation data of diffusion couples.Then,the Ti-(22±0.5)at.%Nb-(30±0.5)at.%Zr-(4±0.5)at.%Cr(TNZC) alloy with a single body-centered cubic(BCC) phase was screened in an interactive loop.The experimental results exhibited a relatively low Young's modulus of(58±4) GPa,high nanohardness of(3.4±0.2) GPa,high microhardness of HV(520±5),high compressive yield strength of(1220±18) MPa,large plastic strain greater than 30%,and superior dry-and wet-wear resistance.This work demonstrates that ML combined with high-throughput analytic approaches can offer a powerful tool to accelerate the design of multicomponent Ti alloys with desired properties.Moreover,it is indicated that TNZC alloy is an attractive candidate for biomedical applications.展开更多
Ti-V-based alloys are proved of huge potential in storing hydrogen,but the incomplete reversible hydrogen storage capacity caused by overstability of V hydride has limited the large-scale application.In this study,Ti_...Ti-V-based alloys are proved of huge potential in storing hydrogen,but the incomplete reversible hydrogen storage capacity caused by overstability of V hydride has limited the large-scale application.In this study,Ti_(32)V_(40+x)Fe_(23-x)Mn_(5)(x=0,4,8,12,at.%)alloys were designed,and the effects of V/Fe ratio on phase constitution and hydrogen storage properties were investigated.The main phase of the alloys is body-centered cubic(BCC)phase,and the lattice constants of the BCC phase decrease with the decrease of V/Fe ratio.Moreover,C14 Laves phase exists in alloys with a Fe content of 19at.%to 23at.%.For hydrogenation,the C14 Laves phase can accelerate the hydrogen absorption rate,but the hydrogen absorption capacity is reduced.With the decrease of V/Fe ratio,the hydride gradually destabilizes.Owing to its large lattice constant and high hydrogen absorption phase content,the Ti_(32)V_(52)Fe_(11)Mn_(5)alloy shows the most enhanced hydrogen storage properties with hydrogenation and dehydrogenation capacities of 3.588wt.%at 298 K and 1.688wt.%at 343 K,respectively.The hydrogen absorption capacity of this alloy can be reserved to 3.574wt.%after 20 cycles of hydrogen absorption and desorption.展开更多
Ti-based hydrogen storage alloy is one of the most common solid-state hydrogen storage materials due to its high hydrogen absorption capacity, low dehydrogenation temperature and rich resources. This paper mainly pres...Ti-based hydrogen storage alloy is one of the most common solid-state hydrogen storage materials due to its high hydrogen absorption capacity, low dehydrogenation temperature and rich resources. This paper mainly presents the influence of several different preparation methods of Ti-based hydrogen storage alloys on the hydrogen storage performance including traditional preparation methods (smelting, rapid quenching and mechanical alloying) and novel methods by plastic deformation (cold rolling, equal channel angular pressing and high-pressure torsion). The microstructure analysis and hydrogen storage properties of Ti-based alloy are summarized thoroughly corresponding with the preparation processes mentioned above. It was found that slight introduction of lattice defects including dislocation, grain boundary, sub-grain boundary and cracks by severe plastic deformation (SPD) was beneficial to improve the hydriding/dehydriding kinetic characteristic. However, the nonuniform composition and residual stress of the alloy may be caused by SPD, which is not conducive to the improvement of hydrogen storage capacity. In the future, it would be expected that new methods and technologies combined with dopant and modification are applied to Ti-based hydrogen storage alloys to make breakthroughs in practical application.展开更多
High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness...High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance.展开更多
This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period ...This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys.展开更多
A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were...A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were used to characterize the different Ni–P coatings’ morphologies, phase structures, elemental compositions, and corrosion protection. The gradient coating showed good adhesion and high corrosion and wear resistance, enabling the application of aluminum alloy in harsh environments. The results showed that the double zinc immersion was vital in obtaining excellent adhesion (81.2 N). The optimal coating was not peeled and shredded even after bending tests with angles higher than 90°and was not corroded visually after 500 h of neutral salt spray test at 35℃. The high corrosion resistance was attributed to the misaligning of these micro defects in the three different nickel alloy layers and the amorphous structure of the high P content in the outer layer. These findings guide the exploration of functional gradient coatings that meet the high application requirement of aluminum alloy parts in complicated and harsh aviation environments.展开更多
Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.Howe...Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.However,the as-built part usually exhibits undesirable microstructure and unsatisfactory performance.In this work,WE43 parts were firstly fabricated by PBF-LB and then subjected to heat treatment.Although a high densification rate of 99.91%was achieved using suitable processes,the as-built parts exhibited anisotropic and layeredmicrostructure with heterogeneously precipitated Nd-rich intermetallic.After heat treatment,fine and nano-scaled Mg24Y5particles were precipitated.Meanwhile,theα-Mg grainsunderwent recrystallization and turned coarsened slightly,which effectively weakened thetexture intensity and reduced the anisotropy.As a consequence,the yield strength and ultimate tensile strength were significantly improved to(250.2±3.5)MPa and(312±3.7)MPa,respectively,while the elongation was still maintained at a high level of 15.2%.Furthermore,the homogenized microstructure reduced the tendency of localized corrosion and favoredthe development of uniform passivation film.Thus,the degradation rate of WE43 parts was decreased by an order of magnitude.Besides,in-vitro cell experiments proved their favorable biocompatibility.展开更多
A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainab...A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainable corrosion inhibitors are chosen to investigate the corrosion inhibition behavior of ionic liquid(ILs)during the LePEO process for LA91 magnesium-lithium(Mg-Li)alloy.Results show that the ionic liquid BmimBF_(4)participates in the LePEO coating formation process,causing an increment in coating thickness and surface roughness.The low conductivity of the ionic liquid is responsible for the voltage and breakdown voltage increases during the LePEO with IL process(LePEO-IL).After adding BmimBF_(4),corrosion current density decreases from 1.159×10^(−4)A·cm^(−2)to 8.143×10^(−6)A·cm^(−2).The impedance modulus increases to 1.048×10^(4)Ω·cm^(−2)and neutral salt spray remains intact for 24 h.The superior corrosion resistance of the LePEO coating assisted by ionic liquid could be mainly attributed to its compact and thick barrier layer and physical absorption of ionic liquid.The ionic liquid-assisted LePEO technique provides a promising approach to reducing energy consumption and improving film performance.展开更多
The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important prac...The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys.展开更多
Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess t...Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess the impacts of adding Cu and Ni,which result in finer grains and the formation of galvanic corrosion sites.Scanner electronic microscopy examination revealed that precipitated phases concentrated at grain boundaries,forming a semi-continuous network structure that facilitated corrosion penetration in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Pitting corrosion was observed in Mg-6Zn-2Fe,while galvanic corrosion was identified as the primary mechanism in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Among the tests,the Mg-6Zn-2Ni alloy exhibited the highest corrosion rate(approximately 932.9 mm/a)due to its significant potential difference.Mechanical testing showed that Mg-6Zn-2Ni alloy possessed suitable ultimate compressive strength,making it a potential candidate material for degradable fracturing balls,effectively addressing the challenges of balancing strength and degradation rate in fracturing applications.展开更多
Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not...Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not been studied for Mg alloys.In this study,WE43 Mg alloy bulk cubes,porous scaffolds,and thin walls with layer thicknesses of 10,20,30,and 40μm were fabricated.The required laser energy input increased with increasing layer thickness and was different for the bulk cubes and porous scaffolds.Porosity tended to occur at the connection joints in porous scaffolds for LT40 and could be eliminated by reducing the laser energy input.For thin wall parts,a large overhang angle or a small wall thickness resulted in porosity when a large layer thicknesses was used,and the porosity disappeared by reducing the layer thickness or laser energy input.A deeper keyhole penetration was found in all occasions with porosity,explaining the influence of layer thickness,geometrical structure,and laser energy input on the porosity.All the samples achieved a high fusion quality with a relative density of over 99.5%using the optimized laser energy input.The increased layer thickness resulted to more precipitation phases,finer grain sizes and decreased grain texture.With the similar high fusion quality,the tensile strength and elongation of bulk samples were significantly improved from 257 MPa and 1.41%with the 10μm layer to 287 MPa and 15.12%with the 40μm layer,in accordance with the microstructural change.The effect of layer thickness on the compressive properties of porous scaffolds was limited.However,the corrosion rate of bulk samples accelerated with increasing the layer thickness,mainly attributed to the increased number of precipitation phases.展开更多
Mg-Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition.The accurate prediction of thermal conductivity is a prerequisite for designing Mg-Al alloys with high ther...Mg-Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition.The accurate prediction of thermal conductivity is a prerequisite for designing Mg-Al alloys with high thermal conductivity.Thus,databases for predicting temperature-and composition-dependent thermal conductivities must be established.In this study,Mg-Al-La alloys with different contents of Al2La,Al3La,and Al11La3phases and solid solubility of Al in the α-Mg phase were designed.The influence of the second phase(s) and Al solid solubility on thermal conductivity was investigated.Experimental results revealed a second phase transformation from Al_(2)La to Al_(3)La and further to Al_(11)La_(3)with the increasing Al content at a constant La amount.The degree of the negative effect of the second phase(s) on thermal diffusivity followed the sequence of Al2La>Al3La>Al_(11)La_(3).Compared with the second phase,an increase in the solid solubility of Al in α-Mg remarkably reduced the thermal conductivity.On the basis of the experimental data,a database of the reciprocal thermal diffusivity of the Mg-Al-La system was established by calculation of the phase diagram (CALPHAD)method.With a standard error of±1.2 W/(m·K),the predicted results were in good agreement with the experimental data.The established database can be used to design Mg-Al alloys with high thermal conductivity and provide valuable guidance for expanding their application prospects.展开更多
The microstructural evolution of Ni–42Ti–7Al and Ni–41Ti–7Al alloys as a function of solution and aging heat treatment was investigated using transmission electron microscopy(TEM), electron probe, and X-ray diff...The microstructural evolution of Ni–42Ti–7Al and Ni–41Ti–7Al alloys as a function of solution and aging heat treatment was investigated using transmission electron microscopy(TEM), electron probe, and X-ray diffraction(XRD). The results reveal that the volume fraction of Ti2 Ni phase as well as its composition does not change significantly after as-solution treated at 1200 °C and aged at 850 °C. At the early stage of the aging treatment at 850 °C for 1 h, the cuboidal β' precipitate keeps coherency with the matrix; further aging, β' precipitate coarsens, and the semicoherency between the β/β' two phases are observed.The shape of coarsened β' precipitates changes to the globule, and the interface dislocations are introduced accompanied by the occurrence of semicoherent precipitates. Under the same heat treatment, compared to the Ni–42Ti–7Al alloy, the lattice misfits of the Ni–41Ti–7Al alloy between the β and β' two phases are larger, so the β' precipitates in Ni–41Ti–7Al alloy are coarsened severely and easily lose coherency with the matrix. The thermal stability of Ni–41Ti–7Al alloy is much worse when aging at 850 °C.展开更多
Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using exi...Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using existing alloys for laser powder bed fusion(L-PBF)AM have persisted.These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes,overlooking the fast cooling rates,steep temperature gradients and multiple thermal cycles of L-PBF.To address this,there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies.This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF.It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys.The review begins by discussing the features of the L-PBF processes,focusing on rapid solidification and intrinsic heat treatment.Next,the printability of the four main existing alloys(Fe-,Ni-,Al-and Ti-based alloys)is critically assessed,with a comparison of their conventional weldability.It was found that the weldability criteria are not always applicable in estimating printability.Furthermore,the review presents recent advances in alloy development and associated strategies,categorizing them into crack mitigation-oriented,microstructure manipulation-oriented and machine learning-assisted approaches.Lastly,an outlook and suggestions are given to highlight the issues that need to be addressed in future work.展开更多
High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Exten...High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.展开更多
基金financial support from FONDECYT Project No.1190797FONDEQUIP/EQM Project No.140095。
文摘The effect of the amount of Sn on the formation of fcc phase in Ti-13 Ta-x Sn(x=3,6,9 and 12,at.%)alloys was studied.The alloys were synthesized by mechanical alloying using a planetary mill,jar and balls of stabilized yttrium.Using Rietveld refinement,it was found that the obtained fcc phase has crystallite size smaller than 10 nm and microstrain larger than 10-3.Both conditions are required to form an fcc phase in Ti-based alloys.For all samples,the microstructure of the fcc phase consists of equiaxial crystallites with sizes smaller than 10 nm.The largest presence of fcc phase in the studied Ti alloy was found with 6 at.%Sn,because this alloy exhibits the largest microstrain(1.5×10-2)and crystallite size of 6.5 nm.Experimental data reveal that a solid solution and an amorphous phase were formed during milling.The necessary conditions to promote the formation of solid solution and amorphous phases were determined using thermodynamic calculations.When the amount of Sn increases,the energy required to form an amorphous phase varies from approximately 10 to approximately-5 k J/mol for 3 and 12 at.%Sn,respectively.The thermodynamic calculations are in agreement with XRD patterns analysis and HRTEM results.
文摘Ti-based alloys have been widely applied in the aerospace field,owing to their outstanding performance.Precision casting can be used to make integrated near-net-shape components with complex thin-walled structures,which will further promote the engineering application of Ti-based alloys. In this paper,the research progress of Tibased alloys,e. g.,high-temperature Ti-based alloys,high-strength Ti-based alloys,TiAl-based alloys,Ti-based matrix composites,and their precision casting technologies are reviewed. In addition,the development directions of Tibased alloys are presented based on the application status of Ti-based alloys in the aerospace field.
文摘A part of Al-Ti-Mo-Cr quaternary phase diagram is constructed for themicrostructure control of D0_(22)-Al_3Ti or its derivative, L1_2-(Al,Cr)_3Ti, -based alloys. It wasfound that quaternary bcc phase equilibrates with either D0_(22)-Al_3Ti or L1_2-(Al,Cr)_3Ti, orboth, exist in large compositional areas. The mechanical properties is strongly affected byprecipitates appearing, and presumably alloy microstructures.
基金Project(50572090) supported by the National Natural Science Foundation of China
文摘A series of BaO-La2O3-B2O3(BLB) glass coats on the Ti-based alloy substrates were developed at different temperatures for different times. The BLB glasses were analyzed by differential thermal analysis(DTA) and thermal mechanical analysis(TMA) to determine the crystallization temperature and coefficients of thermal expansion(CETs) of the glass. The tensile strength and microstructure of the glass coats were analyzed and the effects of the coating condition on the tensile strength and microstructure were discussed. The results show that the CETs of the borate glass at different temperatures match with those of Ti-based alloy,and the difference between the borate glass and Ti-based alloy at each temperature is below 5%. The spreading area in N2 atmosphere is much larger than that in air atmosphere,indicating that N2 atmosphere is helpful for the wetting of borate glass to Ti-based alloy. The tensile strength of the glass coats can reach as high as 28.42 MPa,meeting the requirements for the coat binder. With the increase of coating time,the tensile strength of coats increases firstly while then decreases. The coat prepared at 730 ℃ for 30 min is fairly smooth and complete,while the other coats contain lots of defects such as large or small uncoated region. It is believed that the coating temperature of 730 ℃ and coating time of 30 min are the proper coating conditions to prepare BLB glass coats.
文摘An efficient and safe hydrogen storage method is one of the important links for the large-scale development of hydrogen in the future. Because of its low price and simple design, Ti-based hydrogen storage alloys are considered to be suitable for practical applications. In this paper, we review the latest research on Ti-based hydrogen storage alloys. Firstly, the machine learning and density functional theory are introduced to provide theoretical guidance for the optimization of Ti-based hydrogen storage alloys. Then, in order to improve the hydrogen storage performance, we briefly introduce the research of AB type and AB2 type Ti-based alloys, focusing on doping elements and adaptive after treatment. Finally, suggestions for the future research and development of Ti-based hydrogen storage alloys are proposed. .
基金the financial supports from the National Key Research and Development Program of China (No. 2022YFB3707501)the National Natural Science Foundation of China (No. 51701083)+1 种基金the GDAS Project of Science and Technology Development, China (No. 2022GDASZH2022010107)the Guangzhou Basic and Applied Basic Research Foundation, China (No. 202201010686)。
文摘Based on experimental data,machine learning(ML) models for Young's modulus,hardness,and hot-working ability of Ti-based alloys were constructed.In the models,the interdiffusion and mechanical property data were high-throughput re-evaluated from composition variations and nanoindentation data of diffusion couples.Then,the Ti-(22±0.5)at.%Nb-(30±0.5)at.%Zr-(4±0.5)at.%Cr(TNZC) alloy with a single body-centered cubic(BCC) phase was screened in an interactive loop.The experimental results exhibited a relatively low Young's modulus of(58±4) GPa,high nanohardness of(3.4±0.2) GPa,high microhardness of HV(520±5),high compressive yield strength of(1220±18) MPa,large plastic strain greater than 30%,and superior dry-and wet-wear resistance.This work demonstrates that ML combined with high-throughput analytic approaches can offer a powerful tool to accelerate the design of multicomponent Ti alloys with desired properties.Moreover,it is indicated that TNZC alloy is an attractive candidate for biomedical applications.
基金supported by the National Key Research and Development Program of China(2023YFB4005401)the National Natural Science Foundation of China(52425401,52204386)the Natural Science Foundation of Heilongjiang Province(JQ2023E003).
文摘Ti-V-based alloys are proved of huge potential in storing hydrogen,but the incomplete reversible hydrogen storage capacity caused by overstability of V hydride has limited the large-scale application.In this study,Ti_(32)V_(40+x)Fe_(23-x)Mn_(5)(x=0,4,8,12,at.%)alloys were designed,and the effects of V/Fe ratio on phase constitution and hydrogen storage properties were investigated.The main phase of the alloys is body-centered cubic(BCC)phase,and the lattice constants of the BCC phase decrease with the decrease of V/Fe ratio.Moreover,C14 Laves phase exists in alloys with a Fe content of 19at.%to 23at.%.For hydrogenation,the C14 Laves phase can accelerate the hydrogen absorption rate,but the hydrogen absorption capacity is reduced.With the decrease of V/Fe ratio,the hydride gradually destabilizes.Owing to its large lattice constant and high hydrogen absorption phase content,the Ti_(32)V_(52)Fe_(11)Mn_(5)alloy shows the most enhanced hydrogen storage properties with hydrogenation and dehydrogenation capacities of 3.588wt.%at 298 K and 1.688wt.%at 343 K,respectively.The hydrogen absorption capacity of this alloy can be reserved to 3.574wt.%after 20 cycles of hydrogen absorption and desorption.
文摘Ti-based hydrogen storage alloy is one of the most common solid-state hydrogen storage materials due to its high hydrogen absorption capacity, low dehydrogenation temperature and rich resources. This paper mainly presents the influence of several different preparation methods of Ti-based hydrogen storage alloys on the hydrogen storage performance including traditional preparation methods (smelting, rapid quenching and mechanical alloying) and novel methods by plastic deformation (cold rolling, equal channel angular pressing and high-pressure torsion). The microstructure analysis and hydrogen storage properties of Ti-based alloy are summarized thoroughly corresponding with the preparation processes mentioned above. It was found that slight introduction of lattice defects including dislocation, grain boundary, sub-grain boundary and cracks by severe plastic deformation (SPD) was beneficial to improve the hydriding/dehydriding kinetic characteristic. However, the nonuniform composition and residual stress of the alloy may be caused by SPD, which is not conducive to the improvement of hydrogen storage capacity. In the future, it would be expected that new methods and technologies combined with dopant and modification are applied to Ti-based hydrogen storage alloys to make breakthroughs in practical application.
基金supported by the National Natural Science Foundation of China(No.52273280)the Creative Research Groups of China(No.51921001).
文摘High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance.
基金funded by the National Natural Science Foundation of China(Nos.51801189)The Central Guidance on Local Science and Technology Development Fund of Shanxi Province(Nos.YDZJTSX2021A027)+2 种基金The National Natural Science Foundation of China(Nos.51801189)The Science and Technology Major Project of Shanxi Province(No.20191102008,20191102007)The North University of China Youth Academic Leader Project(No.11045505).
文摘This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys.
基金financially supported by the National Natural Science Foundation of China (No.52271073)。
文摘A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were used to characterize the different Ni–P coatings’ morphologies, phase structures, elemental compositions, and corrosion protection. The gradient coating showed good adhesion and high corrosion and wear resistance, enabling the application of aluminum alloy in harsh environments. The results showed that the double zinc immersion was vital in obtaining excellent adhesion (81.2 N). The optimal coating was not peeled and shredded even after bending tests with angles higher than 90°and was not corroded visually after 500 h of neutral salt spray test at 35℃. The high corrosion resistance was attributed to the misaligning of these micro defects in the three different nickel alloy layers and the amorphous structure of the high P content in the outer layer. These findings guide the exploration of functional gradient coatings that meet the high application requirement of aluminum alloy parts in complicated and harsh aviation environments.
基金supported by the following funds:National Natural Science Foundation of China(51935014,52165043)Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects(20225BCJ23008)+1 种基金Jiangxi Provincial Natural Science Foundation(20224ACB204013,20224ACB214008)Scientific Research Project of Anhui Universities(KJ2021A1106)。
文摘Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.However,the as-built part usually exhibits undesirable microstructure and unsatisfactory performance.In this work,WE43 parts were firstly fabricated by PBF-LB and then subjected to heat treatment.Although a high densification rate of 99.91%was achieved using suitable processes,the as-built parts exhibited anisotropic and layeredmicrostructure with heterogeneously precipitated Nd-rich intermetallic.After heat treatment,fine and nano-scaled Mg24Y5particles were precipitated.Meanwhile,theα-Mg grainsunderwent recrystallization and turned coarsened slightly,which effectively weakened thetexture intensity and reduced the anisotropy.As a consequence,the yield strength and ultimate tensile strength were significantly improved to(250.2±3.5)MPa and(312±3.7)MPa,respectively,while the elongation was still maintained at a high level of 15.2%.Furthermore,the homogenized microstructure reduced the tendency of localized corrosion and favoredthe development of uniform passivation film.Thus,the degradation rate of WE43 parts was decreased by an order of magnitude.Besides,in-vitro cell experiments proved their favorable biocompatibility.
基金supported by the Natural Science Founda-tion of Beijing(Grant No.2182017,2202017).
文摘A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainable corrosion inhibitors are chosen to investigate the corrosion inhibition behavior of ionic liquid(ILs)during the LePEO process for LA91 magnesium-lithium(Mg-Li)alloy.Results show that the ionic liquid BmimBF_(4)participates in the LePEO coating formation process,causing an increment in coating thickness and surface roughness.The low conductivity of the ionic liquid is responsible for the voltage and breakdown voltage increases during the LePEO with IL process(LePEO-IL).After adding BmimBF_(4),corrosion current density decreases from 1.159×10^(−4)A·cm^(−2)to 8.143×10^(−6)A·cm^(−2).The impedance modulus increases to 1.048×10^(4)Ω·cm^(−2)and neutral salt spray remains intact for 24 h.The superior corrosion resistance of the LePEO coating assisted by ionic liquid could be mainly attributed to its compact and thick barrier layer and physical absorption of ionic liquid.The ionic liquid-assisted LePEO technique provides a promising approach to reducing energy consumption and improving film performance.
基金financially supported by the National Natural Science Foundation of China(No.51974028)。
文摘The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys.
基金financially supported by the Key Scientific Research Project in Shanxi Province,China(No.202102050201003)the National Natural Science Foundation of China(No.52071227)+2 种基金the Natural Science Foundation of Shanxi Province,China(No.202103021223293)the Central Guiding Science and Technology Development of Local Fund,China(No.YDZJSK20231A046)the Postgraduate Education Innovation Project of Shanxi Province,China(No.2023Y686)。
文摘Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess the impacts of adding Cu and Ni,which result in finer grains and the formation of galvanic corrosion sites.Scanner electronic microscopy examination revealed that precipitated phases concentrated at grain boundaries,forming a semi-continuous network structure that facilitated corrosion penetration in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Pitting corrosion was observed in Mg-6Zn-2Fe,while galvanic corrosion was identified as the primary mechanism in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Among the tests,the Mg-6Zn-2Ni alloy exhibited the highest corrosion rate(approximately 932.9 mm/a)due to its significant potential difference.Mechanical testing showed that Mg-6Zn-2Ni alloy possessed suitable ultimate compressive strength,making it a potential candidate material for degradable fracturing balls,effectively addressing the challenges of balancing strength and degradation rate in fracturing applications.
基金funded by the National Key Research and Development Program of China(2018YFE0104200)National Natural Science Foundation of China(51875310,52175274,82172065)Tsinghua Precision Medicine Foundation.
文摘Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not been studied for Mg alloys.In this study,WE43 Mg alloy bulk cubes,porous scaffolds,and thin walls with layer thicknesses of 10,20,30,and 40μm were fabricated.The required laser energy input increased with increasing layer thickness and was different for the bulk cubes and porous scaffolds.Porosity tended to occur at the connection joints in porous scaffolds for LT40 and could be eliminated by reducing the laser energy input.For thin wall parts,a large overhang angle or a small wall thickness resulted in porosity when a large layer thicknesses was used,and the porosity disappeared by reducing the layer thickness or laser energy input.A deeper keyhole penetration was found in all occasions with porosity,explaining the influence of layer thickness,geometrical structure,and laser energy input on the porosity.All the samples achieved a high fusion quality with a relative density of over 99.5%using the optimized laser energy input.The increased layer thickness resulted to more precipitation phases,finer grain sizes and decreased grain texture.With the similar high fusion quality,the tensile strength and elongation of bulk samples were significantly improved from 257 MPa and 1.41%with the 10μm layer to 287 MPa and 15.12%with the 40μm layer,in accordance with the microstructural change.The effect of layer thickness on the compressive properties of porous scaffolds was limited.However,the corrosion rate of bulk samples accelerated with increasing the layer thickness,mainly attributed to the increased number of precipitation phases.
基金financially supported by the National Key Research and Development Program of China (No.2021YFB3701001)the National Natural Science Foundation of China (No.U2102212)+1 种基金the Shanghai Rising-Star Program (No.21QA1403200)the Shanghai Engineering Research Center for Metal Parts Green Remanufacture (No.19DZ2252900) from Shanghai Engineering Research Center Construction Project。
文摘Mg-Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition.The accurate prediction of thermal conductivity is a prerequisite for designing Mg-Al alloys with high thermal conductivity.Thus,databases for predicting temperature-and composition-dependent thermal conductivities must be established.In this study,Mg-Al-La alloys with different contents of Al2La,Al3La,and Al11La3phases and solid solubility of Al in the α-Mg phase were designed.The influence of the second phase(s) and Al solid solubility on thermal conductivity was investigated.Experimental results revealed a second phase transformation from Al_(2)La to Al_(3)La and further to Al_(11)La_(3)with the increasing Al content at a constant La amount.The degree of the negative effect of the second phase(s) on thermal diffusivity followed the sequence of Al2La>Al3La>Al_(11)La_(3).Compared with the second phase,an increase in the solid solubility of Al in α-Mg remarkably reduced the thermal conductivity.On the basis of the experimental data,a database of the reciprocal thermal diffusivity of the Mg-Al-La system was established by calculation of the phase diagram (CALPHAD)method.With a standard error of±1.2 W/(m·K),the predicted results were in good agreement with the experimental data.The established database can be used to design Mg-Al alloys with high thermal conductivity and provide valuable guidance for expanding their application prospects.
基金financially supported by the National Natural Science Foundation of China (NSFC) (No. 5110100)
文摘The microstructural evolution of Ni–42Ti–7Al and Ni–41Ti–7Al alloys as a function of solution and aging heat treatment was investigated using transmission electron microscopy(TEM), electron probe, and X-ray diffraction(XRD). The results reveal that the volume fraction of Ti2 Ni phase as well as its composition does not change significantly after as-solution treated at 1200 °C and aged at 850 °C. At the early stage of the aging treatment at 850 °C for 1 h, the cuboidal β' precipitate keeps coherency with the matrix; further aging, β' precipitate coarsens, and the semicoherency between the β/β' two phases are observed.The shape of coarsened β' precipitates changes to the globule, and the interface dislocations are introduced accompanied by the occurrence of semicoherent precipitates. Under the same heat treatment, compared to the Ni–42Ti–7Al alloy, the lattice misfits of the Ni–41Ti–7Al alloy between the β and β' two phases are larger, so the β' precipitates in Ni–41Ti–7Al alloy are coarsened severely and easily lose coherency with the matrix. The thermal stability of Ni–41Ti–7Al alloy is much worse when aging at 850 °C.
基金financially supported by the National Key Research and Development Program of China(2022YFB4600302)National Natural Science Foundation of China(52090041)+1 种基金National Natural Science Foundation of China(52104368)National Major Science and Technology Projects of China(J2019-VII-0010-0150)。
文摘Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using existing alloys for laser powder bed fusion(L-PBF)AM have persisted.These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes,overlooking the fast cooling rates,steep temperature gradients and multiple thermal cycles of L-PBF.To address this,there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies.This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF.It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys.The review begins by discussing the features of the L-PBF processes,focusing on rapid solidification and intrinsic heat treatment.Next,the printability of the four main existing alloys(Fe-,Ni-,Al-and Ti-based alloys)is critically assessed,with a comparison of their conventional weldability.It was found that the weldability criteria are not always applicable in estimating printability.Furthermore,the review presents recent advances in alloy development and associated strategies,categorizing them into crack mitigation-oriented,microstructure manipulation-oriented and machine learning-assisted approaches.Lastly,an outlook and suggestions are given to highlight the issues that need to be addressed in future work.
基金supported by the National Natural Science Foundation of China(Nos.52171098 and 51921001)the State Key Laboratory for Advanced Metals and Materials(No.2022Z-02)+1 种基金the National High-level Personnel of Special Support Program(No.ZYZZ2021001)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-20-03C2 and FRF-BD-20-02B).
文摘High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.