期刊文献+
共找到2,708篇文章
< 1 2 136 >
每页显示 20 50 100
Snap-through behaviors and nonlinear vibrations of a bistable composite laminated cantilever shell:an experimental and numerical study 被引量:2
1
作者 Lele REN Wei ZHANG +1 位作者 Ting DONG Yufei ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期779-794,共16页
The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.... The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell. 展开更多
关键词 bistable composite laminated cantilever shell snap-through behavior nonlinear vibration nonlinear stiffness characteristic chaos and bifurcation
下载PDF
Effects of Sinusoidal Vibration of Crystallization Roller on Composite Microstructure of Ti/Al Laminated Composites by Twin-Roll Casting
2
作者 李励 杜凤山 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期196-205,共10页
A new,innovative vibration cast-rolling technology of “electromagnetic stirring+dendrite breaking+asynchronous rolling” was proposed with the adoption of sinusoidal vibration of crystallization roller to prepare Ti/... A new,innovative vibration cast-rolling technology of “electromagnetic stirring+dendrite breaking+asynchronous rolling” was proposed with the adoption of sinusoidal vibration of crystallization roller to prepare Ti/Al laminated composites,and the effect of sinusoidal vibration of crystallization roller on composite microstructure was investigated in detail.The results show that the metallurgical bonding of titanium and aluminum is realized by mesh interweaving and mosaic meshing,instead of transition bonding by forming metal compound layer.The meshing depth between titanium and aluminum layers (6.6μm) of cast-rolling materials with strong vibration of crystallization roller (amplitude 0.87 mm,vibration frequency 25 Hz) is doubled compared with that of traditional cast-rolling materials (3.1μm),and the composite interfacial strength(27.0 N/mm) is twice as high as that of traditional cast-rolling materials (14.9 N/mm).This is because with the action of high-speed superposition of strong tension along the rolling direction,strong pressure along the width direction and rolling force,the composite linearity evolves from "straight line" with traditional casting-rolling to "curved line",and the depth and number of cracks in the interface increases greatly compared with those with traditional cast-rolling,which leads to the deep expansion of the meshing area between interfacial layers and promotes the stable enhancement of composite quality. 展开更多
关键词 laminated composites sinusoidal vibration composite microstructure
下载PDF
Theoretical and experimental investigation of the resonance responses and chaotic dynamics of a bistable laminated composite shell in the dynamic snap-through mode
3
作者 Meiqi WU Pengyu LV +3 位作者 Hongyuan LI Jiale YAN Huiling DUAN Wei ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期581-602,共22页
The dynamic model of a bistable laminated composite shell simply supported by four corners is further developed to investigate the resonance responses and chaotic behaviors.The existence of the 1:1 resonance relations... The dynamic model of a bistable laminated composite shell simply supported by four corners is further developed to investigate the resonance responses and chaotic behaviors.The existence of the 1:1 resonance relationship between two order vibration modes of the system is verified.The resonance response of this class of bistable structures in the dynamic snap-through mode is investigated,and the four-dimensional(4D)nonlinear modulation equations are derived based on the 1:1 internal resonance relationship by means of the multiple scales method.The Hopf bifurcation and instability interval of the amplitude frequency and force amplitude curves are analyzed.The discussion focuses on investigating the effects of key parameters,e.g.,excitation amplitude,damping coefficient,and detuning parameters,on the resonance responses.The numerical simulations show that the foundation excitation and the degree of coupling between the vibration modes exert a substantial effect on the chaotic dynamics of the system.Furthermore,the significant motions under particular excitation conditions are visualized by bifurcation diagrams,time histories,phase portraits,three-dimensional(3D)phase portraits,and Poincare maps.Finally,the vibration experiment is carried out to study the amplitude frequency responses and bifurcation characteristics for the bistable laminated composite shell,yielding results that are qualitatively consistent with the theoretical results. 展开更多
关键词 bistable laminated composite shell dynamic snap-through mode Hopf bifurcation chaotic dynamics vibration experiment
下载PDF
Inter-well internal resonance analysis of rectangular asymmetric cross-ply bistable composite laminated cantilever shell under transverse foundation excitation
4
作者 Lele REN Wei ZHANG Yufei ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第8期1353-1370,共18页
The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and ... The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and primary resonance.The transverse foundation excitation is applied to the fixed end of the structure,and the other end is in a free state.The first-order approximate multiple scales method is employed to perform the perturbation analysis on the dimensionless two-degree-of-freedom ordinary differential motion control equation.The four-dimensional averaged equations are derived in both polar and rectangular coordinate forms.Deriving from the obtained frequency-amplitude and force-amplitude response curves,a detailed analysis is conducted to examine the impacts of excitation amplitude,damping coefficient,and tuning parameter on the nonlinear internal resonance characteristics of the system.The nonlinear softening characteristic is exhibited in the upper stable-state,while the lower stable-state demonstrates the softening and linearity characteristics.Numerical simulation is carried out using the fourth-order Runge-Kutta method,and a series of nonlinear response curves are plotted.Increasing the excitation amplitude further elucidates the global bifurcation and chaotic dynamic snap-through characteristics of the bistable cantilever shell. 展开更多
关键词 bistable composite laminated cantilever shell inter-well internal resonance primary resonance chaotic dynamic snap-through complex nonlinear vibration
下载PDF
Dynamic analysis of bio-inspired helicoid laminated composite plates resting on Pasternak foundation excited by explosive loading
5
作者 Ngoc-Tu Do Quoc-Hoa Pham 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第12期126-140,共15页
This paper uses isogeometric analysis(IGA)based on higher-order shear deformation theory(HSDT)to study the dynamic response of bio-inspired helicoid laminated composite(B-iHLC)plates resting on Pasternak foundation(PF... This paper uses isogeometric analysis(IGA)based on higher-order shear deformation theory(HSDT)to study the dynamic response of bio-inspired helicoid laminated composite(B-iHLC)plates resting on Pasternak foundation(PF)excited by explosive loading.IGA takes advantage of non-uniform rational Bspline(NURBS)basic functions to exactly represent the structure geometry models and the attainment of higher-order approximation conditions.This method also ensures a C1 continuous function in the analysis of transverse shear deformation via HSDT.Furthermore,IGA eliminates the requirement for correction factors and delivers accurate results.Pasternak foundation with two stiffness parameters:springer stiffness(k_(1))and shear stiffness(k_(2)).The derivation of the governing equations is based on Hamilton's principle.The proposed method is validated through numerical examples.A comprehensive analysis of the impact of geometrical parameters,material properties,boundary conditions(BCs),and foundation stiffness on dynamic response of B-i HLC plates is carried out. 展开更多
关键词 Isogeometric analysis Pasternak foundation Dynamic response laminated composite
下载PDF
Effects of Hydrothermal Environment on the Deformation of the Thin Bamboo Bundle Veneer Laminated Composites
6
作者 Ge Wang Linbi Chen +2 位作者 Haiying Zhou Shanyu Han Fuming Chen 《Journal of Renewable Materials》 SCIE EI 2023年第3期1499-1511,共13页
To overcome warping in thin bamboo bundle veneer laminated composites(TBLC),their hydrothermal deformation characteristics were systematically investigated in this study.It was found that TBLCs accelerated the release... To overcome warping in thin bamboo bundle veneer laminated composites(TBLC),their hydrothermal deformation characteristics were systematically investigated in this study.It was found that TBLCs accelerated the release of internal stress in the thickness direction in a hydrothermal environment,which increased their warpage.TBLCs showed increased warpage in the width and diagonal directions upon increasing the temperature.The warpage of Type E increased by 155.88%and 66.67%in the width and diagonal directions,respectively,when the temperature increased from 25C to 100C.The symmetrical TBLC with cross-lay-up and odd layers displayed better hydrothermal stability.We revealed that the deformation of the TBLCs could be regulated under the synergistic effect of water and temperature.These results provide a scientific basis for improving the uniformity of bamboo bundle composite materials and for developing thin bamboo bundle fiber composite materials with designable structures and controllable performance. 展开更多
关键词 Thin bamboo bundle veneer laminated composites DEFORMATION hydrothermal environment lay-up structure
下载PDF
Interface analysis of 7B52 Al alloy laminated composite fabricated by hot-roll bonding 被引量:9
7
作者 周古昕 郎玉婧 +4 位作者 郝洁 刘稳 王生 乔丽 陈敏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第5期1269-1275,共7页
The bonding interface of 7B52 Al alloy laminated composite (ALC) fabricated by hot rolling was investigated using optical microscopy (OM), transmission electron microscopy (TEM), scanning electron microscopy (... The bonding interface of 7B52 Al alloy laminated composite (ALC) fabricated by hot rolling was investigated using optical microscopy (OM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), ultrasonic flaw detection (UFD), and bonding strength tests. The results show that metallurgical bonding is achieved at the interface after composite rolling. The TEM analysis and tensile tests indicate that the 7B52 ALC plate combines high strength of the hard individual layer and good toughness of the soft individual layer. However, UFD technology and SEM analysis prove that the defects (thick oxide films, acid washed residues, air, oil and coarse particles) existing in the bonding interface are harmful to the bonding strength. To sum up, the composite roiling process is suitable for 7B52 ALC plate, and the content and size of the defects should be controlled strictly. Advanced surface treatment of each individual layer would be beneficial to further improve the bonding quality. 展开更多
关键词 7B52 alurninium alloy laminated composite hot-roll bonding MICROSTRUCTURE interfacial analysis
下载PDF
Microstructural development and its effects on mechanical properties of Al/Cu laminated composite 被引量:17
8
作者 李小兵 祖国胤 王平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期36-45,共10页
The microstructural development and its effect on the mechanical properties of Al/Cu laminated composite produced by asymmetrical roll bonding and annealing were studied. The composite characterizations were conducted... The microstructural development and its effect on the mechanical properties of Al/Cu laminated composite produced by asymmetrical roll bonding and annealing were studied. The composite characterizations were conducted by transmission electron microscope(TEM), scanning electron microscope(SEM), peeling tests and tensile tests. It is found that the ultra-fine grained laminated composites with tight bonding interface are prepared by the roll bonding technique. The annealing prompts the atomic diffusion in the interface between dissimilar matrixes, and even causes the formation of intermetallic compounds. The interfacial bonding strength increases to the maximum value owing to the interfacial solution strengthening at 300 °C annealing, but sharply decreases by the damage effect of intermetallic compounds at elevated temperatures. The composites obtain high tensile strength due to the Al crystallization grains and Cu twins at 300 °C. At 350 °C annealing, however, the composites get high elongation by the interfacial interlayer with submicron thickness. 展开更多
关键词 Al/Cu laminated composite roll bonding INTERFACE ultra-fine grain
下载PDF
Research on Fatigue Damage Behavior of Main Beam Sub-Structure of Composite Wind Turbine Blade
9
作者 Haixia Kou Bowen Yang +2 位作者 Xuyao Zhang Xiaobo Yang Haibo Zhao 《Structural Durability & Health Monitoring》 EI 2024年第3期277-297,共21页
Given the difficulty in accurately evaluating the fatigue performance of large composite wind turbine blades(referred to as blades),this paper takes the main beam structure of the blade with a rectangular cross-sectio... Given the difficulty in accurately evaluating the fatigue performance of large composite wind turbine blades(referred to as blades),this paper takes the main beam structure of the blade with a rectangular cross-sectionas the simulation object and establishes a composite laminate rectangular beam structure that simultaneouslyincludes the flange,web,and adhesive layer,referred to as the blade main beam sub-structure specimen,throughthe definition of blade sub-structures.This paper examines the progressive damage evolution law of the compositelaminate rectangular beam utilizing an improved 3D Hashin failure criterion,cohesive zone model,B-K failurecriterion,and computer simulation technology.Under static loading,the layup angle of the anti-shear web hasa close relationship with the static load-carrying capacity of the composite laminate rectangular beam;under fatigueloading,the fatigue damage will first occur in the lower flange adhesive area of the whole composite laminaterectangular beam and ultimately result in the fracture failure of the entire structure.These results provide a theoreticalreference and foundation for evaluating and predicting the fatigue performance of the blade main beamstructure and even the full-size blade. 展开更多
关键词 composite laminate wind turbine blade sub-structure progressive damage analysis user material subroutine cohesive zone model
下载PDF
PROGRESSIVE FAILURE ANALYSIS OF LAMINATED COMPOSITES WITH TRANSVERSE SHEAR EFFECTS
10
作者 黄传奇 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1995年第1期15-22,共8页
This paper deals with the progressive failure analysis of composite laminates. Triangular elements which include the transverse shear effects are us.d for the stress analysis. A new method for the calculation of the s... This paper deals with the progressive failure analysis of composite laminates. Triangular elements which include the transverse shear effects are us.d for the stress analysis. A new method for the calculation of the shear correction factors is presented. Several failure criteria are used to check the first ply failure and distinguish the laminate failure modes into fiber breakage or buckling, matrix cracking and delamination. After the failure is detected, the stiffness of the failed ply is modified according to the failure modes. The ultimate strength of the laminate is obtained by an iterative way. Several examples are given in the paper for stress analysis and progressive failure analysis of composite laminates. 展开更多
关键词 composite materials laminated composites failure analysis failure criterion transverse shear DAMAGE
下载PDF
A METHOD FOR PREDICTING BUCKLING LOADS OF COMPOSITE LAMINATED STRIPS WITH A SURFACE NOTCH
11
作者 胡自力 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1999年第1期75-79,共5页
Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with... Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with a surface notch. The theoretical and experimental results show that the buckling loads decrease as the depth or width of the surface notches increase; when the stacking sequence of the laminated strips is [0°/0°/+ θ/-θ/0°/0°/+θ/-θ] s , the buckling load decrease as θ increases. It proves that the method is reliable and significant. 展开更多
关键词 composite materials laminated strips surface notch BUCKLING calculation method
下载PDF
Preparation, structure and properties of Mg/Al laminated metal composites fabricated by roll-bonding, a review 被引量:11
12
作者 Tingting Liu Bo Song +4 位作者 Guangsheng Huang Xianquan Jiang Shengfeng Guo Kaihong Zheng Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第8期2062-2093,共32页
Laminated metal composites(LMCs) are a unique composite material and have great application prospects in automobiles, ships, aircraft,and other manufacturing industries. As lightweight materials, the Mg/Al LMCs are ex... Laminated metal composites(LMCs) are a unique composite material and have great application prospects in automobiles, ships, aircraft,and other manufacturing industries. As lightweight materials, the Mg/Al LMCs are expected to combine the advantages of both Mg and Al alloys to broaden their application prospects. Roll-bonding is the most popular process for the fabrication of Mg/Al LMCs due to high production efficiency and good product quality stability. The roll-bonding process involves the deformation of the substrates and the formation of the interfacial diffusion layer. The latter will directly determine the interface bonding strength of Mg/Al LMCs. Bonding strength is very sensitive to the thickness of the reaction layer in the diffusion layer. When the thickness of the reaction layer exceeds 5 μm, the bonding strength decreases sharply. Therefore, controlling the thickness of the reaction layer is very important for the design of rolling parameters.The latest research also showed that the addition of intermediate layer metal and the construction of three-dimensional interfaces can further improve the interface bonding strength. How to apply these methods to roll-bonding is the focus of future research. Recently, a new rolling technique, corrugated roll/plat roll rolling+flat roll/flat roll rolling has been developed to fabricate Mg/Al LMCs. It can effectively promote the deformation of the hard layer and generate a wavy interface, resulting in the enhancement of the bonding quality and rolling quality.In the current review, the effects of rolling parameters and subsequent annealing on the interface structure of Mg/Al LMCs were elaborated in detail. The application of some special rolling techniques in the preparation of Mg/Al LMCs was also summarized. The latest research results on the relationship between interface structure and mechanical properties of Mg/Al LMCs were reviewed. Finally, further research directions in this field were proposed. 展开更多
关键词 Mg/Al laminated metal composites Roll-bonding Interface Mechanical properties
下载PDF
Application of the quadrilateral area coordinate method:a new element for laminated composite plate bending problems 被引量:6
13
作者 Song Cen Xiangrong Fu +2 位作者 Yuqiu Long Hongguang Li Zhenhan Yao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2007年第5期561-575,共15页
Recently, some new quadrilateral finite elements were successfully developed by the Quadrilateral Area Coordinate (QAC) method. Compared with those traditional models using isoparametric coordinates, these new model... Recently, some new quadrilateral finite elements were successfully developed by the Quadrilateral Area Coordinate (QAC) method. Compared with those traditional models using isoparametric coordinates, these new models are less sensitive to mesh distortion. In this paper, a new displacement-based, 4-node 20-DOF (5-DOF per node) quadrilateral bending element based on the first-order shear deformation theory for analysis of arbitrary laminated composite plates is presented. Its bending part is based on the element AC-MQ4, a recent-developed high-performance Mindlin-Reissner plate element formulated by QAC method and the generalized conforming condition method; and its in-plane displacement fields are interpolated by bilinear shape functions in isoparametric coordinates. Furthermore, the hybrid post-rocessing procedure, which was firstly proposed by the authors, is employed again to improve the stress solutions, especially for the transverse shear stresses. The resulting element, denoted as AC-MQ4-LC, exhibits excellent performance in all linear static and dynamic numerical examples. It demonstrates again that the QAC method, the generalized conforming condition method, and the hybrid post-processing procedure are efficient tools for developing simple, effective and reliable finite element models. 展开更多
关键词 Quadrilateral Area Coordinate (QAC) Finite element laminated composite plate First-order shear deformation theory (FSDT) Hybrid post-processing procedure
下载PDF
Double Hopf bifurcation of composite laminated piezoelectric plate subjected to external and internal excitations 被引量:4
14
作者 Yan ZHOU Wei ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第5期689-706,共18页
The double Hopf bifurcation of a composite laminated piezoelectric plate with combined external and internal excitations is studied. Using a multiple scale method, the average equations are obtained in two coordinates... The double Hopf bifurcation of a composite laminated piezoelectric plate with combined external and internal excitations is studied. Using a multiple scale method, the average equations are obtained in two coordinates. The bifurcation response equations of the composite laminated piezoelectric plate with the primary parameter resonance, i.e., 1:3 internal resonance, are achieved. Then, the bifurcation feature of bifurcation equations is considered using the singularity theory. A bifurcation diagram is obtained on the parameter plane. Different steady state solutions of the average equations are analyzed. By numerical simulation, periodic vibration and quasi-periodic vibration responses of the Composite laminated piezoelectric plate are obtained. 展开更多
关键词 double Hopf bifurcation composite laminated piezoelectric plate periodic solution quasi-periodic solution
下载PDF
ROBUST OPTIMUM DESIGN OF LAMINATED COMPOSITE PLATES 被引量:4
15
作者 WangXiangyang ChenJianqiao 《Acta Mechanica Solida Sinica》 SCIE EI 2004年第4期315-322,共8页
A last-ply failure (LPF) analysis method for laminated composite plates is incorpo- rated into the ?nite element code-ANSYS, and a robust optimum design method is presented. The composite structure is analyzed... A last-ply failure (LPF) analysis method for laminated composite plates is incorpo- rated into the ?nite element code-ANSYS, and a robust optimum design method is presented. The composite structure is analyzed by considering both in-plane and out-of-plane loads. For a lamina, two major failure modes are considered: matrix failure and ?ber breakage that are characterized by the proper strength criteria in the literature. When a lamina has failed, the laminate sti?ness is modi?ed to re?ect the damage, and stresses in the structure are re-analyzed. This procedure is repeatedly performed until the whole structure fails and thus the ultimate strength is determined. A structural optimization problem is solved with the ?ber orientation and the lamina thickness as the design variables and the LPF load as the objective. Finally, the robust optimum design method for laminates is presented and discussed. 展开更多
关键词 laminated composites last-ply failure optimum design robust optimization
下载PDF
Experimental and simulation studies on delamination strength of laminated glass composites having polyvinyl butyral and ethyl vinyl acetate inter-layers of different critical thicknesses 被引量:2
16
作者 Ajitanshu Vedrtnam 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第4期313-317,共5页
The laminated glasses(LGs)composites are gaining popularity as protectivestructural material. Delamination strength(DS) of(LGs) with different inter-layers and their different nominal thicknesses were compared. The ef... The laminated glasses(LGs)composites are gaining popularity as protectivestructural material. Delamination strength(DS) of(LGs) with different inter-layers and their different nominal thicknesses were compared. The effect of inter-layer thickness, delamination load, and inter-layer type on DS is clearly observed from this brief study. It is concluded that inter-layer thickness has the significant role in determining the DS of LGs. The statistical analysis confirmed the strong association of DS with inter-layer thickness and the interlayer type. It was found that the LG-PVB composite has the comparatively lower DS than LG-EVA composite and inter-layer thickness has the prominent role in the determination of DS in the LG-EVAcomposite. There is an increment in DS with an increment in critical inter-layer thickness in both LG-EVA and LG-PVBcomposites. The increment in the inter-layer thickness from 0.38 mm to 0.76 mm increases DS significantly; whereas, the further increment in the inter-layer thickness to the higher value has a lesser effect. The finite element model was constituted(without considering the effect of temperature) for determining DS of LG composite. The simulation results were in a good match with experimental results. The results of the present work can be utilized by the design engineers while selecting LG for structural applications. 展开更多
关键词 DElaminATION STRENGTH composite material PVB laminated glass Finite element analysis
下载PDF
FRACTURAL PROCESS AND TOUGHENING MECHANISM OF LAMINATED CERAMIC COMPOSITES 被引量:3
17
作者 Zhang Yafang Tang Chun'an +1 位作者 Zhang Yongbin Liang Zhenzao 《Acta Mechanica Solida Sinica》 SCIE EI 2007年第2期141-148,共8页
Based on the model of multi-layer beam and the assumption of micro-inhomogeneity of material, the 3D fractural characteristics of laminated ceramic composites have been studied with numerical simulation. Under three-p... Based on the model of multi-layer beam and the assumption of micro-inhomogeneity of material, the 3D fractural characteristics of laminated ceramic composites have been studied with numerical simulation. Under three-point bending load, crack initiation, coalescence, propagation, tuning off in the weak interface and final rupture have been simulated. The spatial distribution and evolution process of acoustic emission are also presented in the paper. The simulation verifies the primary mechanism of the weak interface inducing the crack to expand along there and absorbing the fractural energy. The disciplinary significance of the effect of strength and properties of material on the toughness and strength of laminated ceramic composites is, therefore, discussed in this paper. 展开更多
关键词 laminated ceramic composite TOUGHENING numerical simulation
下载PDF
A refined finite element method for bending analysis of laminated plates integrated with piezoelectric fiber-reinforced composite actuators 被引量:3
18
作者 J.Rouzegar A.Abbasi 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第4期689-705,共17页
This research presents a finite element formulation based on four-variable refined plate theory for bending analysis of cross-ply and angle-ply laminated composite plates integrated with a piezoelectric fiber-reinforc... This research presents a finite element formulation based on four-variable refined plate theory for bending analysis of cross-ply and angle-ply laminated composite plates integrated with a piezoelectric fiber-reinforced composite actuator under electromechanical loading. The four-variable refined plate theory is a simple and efficient higher-order shear deformation theory, which predicts parabolic variation of transverse shear stresses across the plate thickness and satisfies zero traction conditions on the plate free surfaces. The weak form of governing equations is derived using the principle of minimum potential energy, and a 4-node non-conforming rectangular plate element with 8 degrees of freedom per node is introduced for discretizing the domain. Several benchmark problems are solved by the developed MATLAB code and the obtained results are compared with those from exact and other numerical solutions, showing good agreement. 展开更多
关键词 Finite elementmethod laminated plate Piezoelectric fiber-reinforced composite(PFRC)actuator PIEZOELECTRIC Refined plate theory Smart structures
下载PDF
Neural Network-Based Second Order Reliability Method(NNBSORM)for Laminated Composite Plates in Free Vibration 被引量:4
19
作者 Mena E.Tawfik Peter L.Bishay Edward E.Sadek 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第4期105-129,共25页
Monte Carlo Simulations(MCS),commonly used for reliability analysis,require a large amount of data points to obtain acceptable accuracy,even if the Subset Simulation with Importance Sampling(SS/IS)methods are used.The... Monte Carlo Simulations(MCS),commonly used for reliability analysis,require a large amount of data points to obtain acceptable accuracy,even if the Subset Simulation with Importance Sampling(SS/IS)methods are used.The Second Order Reliability Method(SORM)has proved to be an excellent rapid tool in the stochastic analysis of laminated composite structures,when compared to the slower MCS techniques.However,SORM requires differentiating the performance function with respect to each of the random variables involved in the simulation.The most suitable approach to do this is to use a symbolic solver,which renders the simulations very slow,although still faster than MCS.Moreover,the inability to obtain the derivative of the performance function with respect to some parameters,such as ply thickness,limits the capabilities of the classical SORM.In this work,a Neural Network-Based Second Order Reliability Method(NNBSORM)is developed to replace the finite element algorithm in the stochastic analysis of laminated composite plates in free vibration.Because of the ability to obtain expressions for the first and second derivatives of the NN system outputs with respect to any of its inputs,such as material properties,ply thicknesses and orientation angles,the need for using a symbolic solver to calculate the derivatives of the performance function no longer exists.The proposed approach is accordingly much faster,and easily allows for the consideration of ply thickness uncertainty.The present analysis showed that dealing with ply thicknesses as random variables results in 37%increase in the laminate’s probability of failure. 展开更多
关键词 Reliability analysis artificial neural network composite laminATES SUBSET simulation IMPORTANCE sampling MONTE Carlo
下载PDF
Elastic and Plastic Behaviors of Laminated Ti-TiBw/Ti Composites 被引量:2
20
作者 刘宝玺 黄陆军 GENG Lin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第3期596-600,共5页
The novel laminated Ti-TiBw/Ti composites composed of pure Ti layers and TiBw/Ti composite layers have been successfully fabricated by reactive hot pressing. Herein, two-scale structures formed: the pure Ti layer and... The novel laminated Ti-TiBw/Ti composites composed of pure Ti layers and TiBw/Ti composite layers have been successfully fabricated by reactive hot pressing. Herein, two-scale structures formed: the pure Ti layer and TiBw/Ti composite layer together constructed a laminated structure at a macro scale. Furthermore, TiBw reinforcement was distributed around Ti particles and then formed a network microstructure in TiBw/Ti composite layer at a micro scale. The laminated Ti-TiBw/Ti composites reveal a superior combination of high strength and high elongation due to two-scale structures compared with the pure Ti, and a further enhancement in ductility compared with the network structured composites. Moreover, the elastic modulus of the laminated composites can be predicted by H-S upper bound, which is consistent with the experimental values. 展开更多
关键词 titanium matrix composites laminated microstructure two-scale structure elastic modulus tensile properties H-S bounds
下载PDF
上一页 1 2 136 下一页 到第
使用帮助 返回顶部