期刊文献+
共找到168篇文章
< 1 2 9 >
每页显示 20 50 100
Microstructure and phase composition of Ti-based biocomposites with different contents of nano-hydroxyapatite
1
作者 李卫 庞鹏沙 刘英 《中国有色金属学会会刊:英文版》 CSCD 2007年第A02期1148-1151,共4页
Nano-hydroxyapatite(nHA) and titanium(Ti) powders with different ratios were prepared by mechanical ball milling,and then sintered in vacuum environment. The microstructure and phase composition of Ti-based biocomposi... Nano-hydroxyapatite(nHA) and titanium(Ti) powders with different ratios were prepared by mechanical ball milling,and then sintered in vacuum environment. The microstructure and phase composition of Ti-based biocomposites with different contents of nHA(5% and 10%,in volume fraction) were investigated. Meanwhile,the phase composition of pure Ti was studied for contrast. The results show that Ti phase forms a finer continuous network microstructure with few porous after milling and sintering. The higher amount of nHA powders are added,the higher amount of porous are achieved,while the fracture morphology becomes coarser. The specimen with contents of 10% nHA has serious interface reaction after sintering at 1 100 ℃,it varies with the pure Ti specimen. Combined with the XRD and EDS analysis,it can be founded that elements Ca,P,O and Ti diffuse on the interface,and the phases of Ti,Ti2O,Ti5P3,CaTiO3 and TiOx can be ascertained in nHA/Ti composites. 展开更多
关键词 生物材料 纳米羟磷灰石 微观结构 界面反应
下载PDF
Sustainable Biocomposites Materials for Automotive Brake Pad Application:An Overview
2
作者 Joseph O.Dirisu Imhade P.Okokpujie +4 位作者 Olufunmilayo O.Joseph Sunday O.Oyedepo Oluwasegun Falodun Lagouge K.Tartibu Firdaussi D.Shehu 《Journal of Renewable Materials》 EI CAS 2024年第3期485-511,共27页
Research into converting waste into viable eco-friendly products has gained global concern.Using natural fibres and pulverized metallic waste becomes necessary to reduce noxious environmental emissions due to indiscri... Research into converting waste into viable eco-friendly products has gained global concern.Using natural fibres and pulverized metallic waste becomes necessary to reduce noxious environmental emissions due to indiscriminately occupying the land.This study reviews the literature in the broad area of green composites in search of materials that can be used in automotive brake pads.Materials made by biocomposite,rather than fossil fuels,will be favoured.A database containing the tribo-mechanical performance of numerous potential components for the future green composite was established using the technical details of bio-polymers and natural reinforcements.The development of materials with diverse compositions and varying proportions is now conceivable,and these materials can be permanently connected in fully regulated processes.This explanation demonstrates that all of these variables affect friction coefficient,resistance to wear from friction and high temperatures,and the operating life of brake pads to varying degrees.In this study,renewable materials for the matrix and reinforcement are screened to determine which have sufficient strength,coefficient of friction,wear resistance properties,and reasonable costs,making them a feasible option for a green composite.The most significant,intriguing,and unusual materials used in manufacturing brake pads are gathered in this review,which also analyzes how they affect the tribological characteristics of the pads. 展开更多
关键词 Asbestos brake pad biocomposites green composite mechanical properties natural reinforcement WASTE
下载PDF
Development and Characterization of Calcium Based Biocomposites Using Waste Material (Calcite Stones) for Biomedical Applications
3
作者 Tasmim Adry Nuzhat Tabassum Maisha +2 位作者 Md. Abdul Gafur Suraya Sabrin Soshi Maruf Hasan 《Materials Sciences and Applications》 2024年第5期113-135,共23页
Calcium-based biocomposite materials have a pivotal role in the biomedical field with their diverse properties and applications in combating challenging medical problems. The study states the development and character... Calcium-based biocomposite materials have a pivotal role in the biomedical field with their diverse properties and applications in combating challenging medical problems. The study states the development and characterization of Calcium-based biocomposites: Hydroxyapatite (HAP), and PVA-Gelatin-HAP films. For the preparation of Calcium-based biocomposites, an unconventional source, the waste material calcite stone, was used as calcium raw material, and by the process of calcination, calcium oxide was synthesized. From calcium oxide, HAP was prepared by chemical precipitation method, which was later added in different proportions to PVA-Gelatin solution and finally dried to form biocomposite films. Then the different properties of PVA/Gelatin/HAP composite, for instance, chemical, mechanical, thermal, and swelling properties due to the incorporation of various proportions of HAP in PVA-Gelatin solution, were investigated. The characterization of the HAP was conducted by X-ray Diffraction Analysis, and the characterization of HAP-PVA-Gelatin composites was done by Fourier Transform Infrared Spectroscopy, Thermomechanical Analysis, Tensile test, Thermogravimetric Differential Thermal Analysis, and Swelling Test. The produced biocomposite films might have applications in orthopedic implants, drug delivery, bone tissue engineering, and wound healing. 展开更多
关键词 HYDROXYAPATITE Calcium-Based biocomposites PVA-Gelatin Films Drug Delivery Bone Tissue Engineering
下载PDF
Properties of Ti-Based Hydrogen Storage Alloy
4
作者 Rui Xu Tao Cheng +2 位作者 Chaoyu Li Xue Yang Junfeng Rong 《Journal of Power and Energy Engineering》 2024年第3期99-114,共16页
An efficient and safe hydrogen storage method is one of the important links for the large-scale development of hydrogen in the future. Because of its low price and simple design, Ti-based hydrogen storage alloys are c... An efficient and safe hydrogen storage method is one of the important links for the large-scale development of hydrogen in the future. Because of its low price and simple design, Ti-based hydrogen storage alloys are considered to be suitable for practical applications. In this paper, we review the latest research on Ti-based hydrogen storage alloys. Firstly, the machine learning and density functional theory are introduced to provide theoretical guidance for the optimization of Ti-based hydrogen storage alloys. Then, in order to improve the hydrogen storage performance, we briefly introduce the research of AB type and AB2 type Ti-based alloys, focusing on doping elements and adaptive after treatment. Finally, suggestions for the future research and development of Ti-based hydrogen storage alloys are proposed. . 展开更多
关键词 Renewable Energy Hydrogen Storage ti-based Alloy Machine Learning
下载PDF
Characterization of Formacell Lignin Derived from Black Liquor as a Potential Green Additive for Advanced Biocomposites
5
作者 Sri Hidayati Eugenia Fonny Budiyanto +7 位作者 Hadi Saputra Sutopo Hadi Apri Heri Iswanto Nissa Nurfajrin Solihat Petar Antov Lee Seng Hua Widya Fatriasari MohdSapuan Salit 《Journal of Renewable Materials》 SCIE EI 2023年第6期2865-2879,共15页
Black liquor is obtained as a by-product of the pulping process,which is used to convert biomass into pulp by removing lignin,hemicelluloses and other extractives from wood to free cellulose fibers.Lignin represents a... Black liquor is obtained as a by-product of the pulping process,which is used to convert biomass into pulp by removing lignin,hemicelluloses and other extractives from wood to free cellulose fibers.Lignin represents a major constituent in black liquor,with quantities varying from 20%to 30%,of which a very low share is used for manufacturing value-added products,while the rest is mainly burned for energy purposes,thus underestimating its great potential as a raw material.Therefore,it is essential to establish new isolation and extraction methods to increase lignin valorization in the development of bio-based chemicals.The aim of this research work was to determine the effect of KOH or ethanol concentration as an isolation agent on lignin yields and the chemical characteristics of lignin isolated from formacell black liquor of oil palm empty fruit bunch(OPEFB).Isolation of lignin was carried out using KOH with various concentrations ranging from 5%to 15%(w/v).Ethanol was also used to precipitate lignin from black liquor at concentrations varying from 5%to 30%(v/v).The results obtained showed that the addition of KOH solution at 12.5%and 15%concentrations resulted in better lignin yield and chemical properties of lignin,i.e.,pH values of 3.86 and 4.27,lignin yield of 12.78%and 14.95%,methoxyl content of 11.33%and 10.13%,and lignin equivalent weights of 476.25 and 427.03,respectively.Due to its phenolic structure and rich functional groups that are favorable for modifications,lignin has the potential to be used as a green additive in the development of advanced biocomposite products in various applications to replace current fossil fuel-based material,ranging from fillers,fire retardants,formaldehyde scavengers,carbon fibers,aerogels,and wood adhesives. 展开更多
关键词 Formacell black liquor lignin properties KOH ETHANOL oil palm empty fruit bunch advanced biocomposite
下载PDF
Synthesis and Structural Characterization of Hydroxyapatite-Wollastonite Biocomposites, Produced by an Alternative Sol-Gel Route 被引量:2
6
作者 Martín A. Encinas-Romero Jesús Peralta-Haley +1 位作者 Jesús L. Valenzuela-García Felipe F. Castillón-Barraza 《Journal of Biomaterials and Nanobiotechnology》 2013年第4期327-333,共7页
Hydroxyapatite is a type of calcium phosphate-based material with great interest for biomedical applications, due to the chemical similarity between this material and the mineral part of human bone. However, synthetic... Hydroxyapatite is a type of calcium phosphate-based material with great interest for biomedical applications, due to the chemical similarity between this material and the mineral part of human bone. However, synthetic hydroxyapatite is essentially brittle;the practice indicates that the use of hydroxyapatite without additives for implant production is not efficient, due to its low strength parameters. In the present work, biocomposites of hydroxyapatite-wollastonite were synthesized by an alternative sol-gel route, using calcium nitrate and ammonium phosphate as precursors of hydroxyapatite, and high purity natural wollastonite was added in ratios of 20, 50 and 80 percent by weight immersed in aqueous medium. Formation of hydroxyapatite occurs at a relatively low temperature of about 350?C, while the wollastonite remains unreacted. After that, these biocomposites were sintered at 1200?C for 5 h to produce dense materials. The characterization techniques demonstrated the presence of hydroxyapatite and wollastonite as unique phases in all products. 展开更多
关键词 HYDROXYAPATITE WOLLASTONITE BIOCERAMICS biocomposites SOL-GEL
下载PDF
Novel Mycelium-Based Biocomposites (MBB) as Building Materials 被引量:2
7
作者 Zinta Zimele Ilze Irbe +3 位作者 Juris Grinins Oskars Bikovens Anrijs Verovkins Diana Bajare 《Journal of Renewable Materials》 SCIE EI 2020年第9期1067-1076,共10页
Novel mycelium-based biocomposites(MBB)were obtained from local agricultural(hemp shives)and forestry(wood chips)by-products which were bounded together with natural growth of fungal mycelium.As a result,hemp mycocomp... Novel mycelium-based biocomposites(MBB)were obtained from local agricultural(hemp shives)and forestry(wood chips)by-products which were bounded together with natural growth of fungal mycelium.As a result,hemp mycocomposites(HMC)and wood mycocomposites(WMC)were manufactured.Mechanical,water absorption and biodegradation properties of MBB were investigated.MBB were characterized also by ash content and elemental composition.The results of MBB were compared with the reference materials such as the commercial MBB material manufactured by Ecovative®Design(EV),hemp magnesium oxychloride concrete(HC)and cemented wood wool panel(CW),manufactured by CEWOOD®.The mechanical properties of HMC and WMC showed that the bending strength difference was about 30%,with a better result for HMC.Compression strength was better for WMC by about 60%compared to that of HMC.The mechanical strength of HMC and HC materials was equal;both materials contained hemp shives but differed by the binding material.Water absorption and volumetric swelling tests showed that HMC and WMC could be considered as potential biosorbents.Ash content and elemental analysis showed that reference materials(CW,HC)contained significant amounts of inorganic compounds that decreased the biodegradation rate,compared to the case of HMC and WMC materials.The biodegradation results of HMC and WMC,after 12 weeks,revealed a mass loss(ML)above 70%,while in the case of EV,HC and CW,it was about 60%,17%and only 6%,respectively.MBB were completely biodegradable. 展开更多
关键词 Mycelium-based biocomposites(MBB) mechanical properties water absorption biodegradation
下载PDF
Current status of duplex surface engineered Ti-based materials 被引量:1
8
作者 T.Bell 《中国有色金属学会会刊:英文版》 CSCD 2004年第z1期6-12,共7页
Industrial exploitation of the high specific strength and corrosion resistance of titanium were dominated historically by the technological advances which have been made in gas-turbine engine and aircraft components. ... Industrial exploitation of the high specific strength and corrosion resistance of titanium were dominated historically by the technological advances which have been made in gas-turbine engine and aircraft components. Realization of the possible benefits in general engineering has been limited by the absence of any proven and reliable means of overcoming the poor wear resistance and galling tendency suffered by titanium alloys when in contact with other materials. This problem can only be addressed by optimizing and demonstrating industrially viable surface engineering processes for titanium in general engineering. The status of single and duplex surface engineering systems are reviewed. In addition, in order to fully realize the potential of advanced surface engineering of titanium components contact mechanics models are developed to enable the automotive engineers to design dynamically the loaded automotive engine and transmission components. 展开更多
关键词 ti-based MATERIAL SPECIFIC STRENGTH CORROSION RESISTANCE
下载PDF
Influence of Glycerol Content on Properties of Wheat Gluten/Hydroxyethyl Cellulose Biocomposites
9
作者 SONG Yi-hu ZHENG Qiang LIU Cheng 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2008年第5期644-647,共4页
Environmentally friendly biocomposites were prepared by blending wheat gluten(WG)as a matrix, hydroxyethyl cellulose(HEC)as a filler,and glycerol as a plasticizer,followed by thermo-molding of the mixture at 120&#... Environmentally friendly biocomposites were prepared by blending wheat gluten(WG)as a matrix, hydroxyethyl cellulose(HEC)as a filler,and glycerol as a plasticizer,followed by thermo-molding of the mixture at 120°C for crosslinking the matrix.Moisture absorption,tensile properties,dynamic mechanical analysis,and dynamic rheology were evaluated in relation to the glycerol content.Tensile strength and modulus drop dramatically with increasing glycerol content,which is accompanied by significant depression in the glass transition temperature and improvement in the extensibility of the biocomposites. 展开更多
关键词 Wheat gluten Hydroxyethyl cellulose biocompositE
下载PDF
Study of the Thermal, Rheological, Morphological and Mechanical Properties of Biocomposites Based on Rod-Of Typha/HDPE Made up of Typha Stem and HDPE
10
作者 Babacar Niang El Hadj Babacar Ly +6 位作者 Abdou Karim Diallo Nicola Schiavone Haroutioun Askanian Vincent Verney Ansou Malang Badji Mahmoud Kalid Diakite Diéne Ndiaye 《Advances in Materials Physics and Chemistry》 2018年第9期340-357,共18页
The thermal, rheological and morphological properties of composite biomaterials made with mixture of high density polyethylene and typha rod powder (RD) were evaluated. The dynamic mechanical behavior of the samples w... The thermal, rheological and morphological properties of composite biomaterials made with mixture of high density polyethylene and typha rod powder (RD) were evaluated. The dynamic mechanical behavior of the samples was studied with 25%, 35% and 45% typha stem powder concentrations. The viscoelastic properties are mainly related to the nature of the polymer and the typha stem powder. Storage (G') and loss (G') moduli increased significantly, depending on the amount of powder in the molten mixture. After a viscosity increase was noticed in low frequency, it decreased in high frequencies, which demonstrates the pseudo-plasticity effect. Morphological and thermal characterization results have shown the dispersion state of the powder and its ability to modify the kinetics crystallization of biocomposites. 展开更多
关键词 biocompositE THERMAL RHEOLOGICAL MORPHOLOGICAL MECHANICAL Properties
下载PDF
Development and Application of Ti-based Alloy Casting Technologies in the Field of Aerospace
11
作者 HOU Zhengquan LI Baohui +6 位作者 FENG Gangwen WU Jingxi FAN Lipeng GUO Yingfei CHEN Yuyong CHEN Bin ZHANG Xuliang 《上海航天(中英文)》 CSCD 2022年第1期1-14,共14页
Ti-based alloys have been widely applied in the aerospace field,owing to their outstanding performance.Precision casting can be used to make integrated near-net-shape components with complex thin-walled structures,whi... Ti-based alloys have been widely applied in the aerospace field,owing to their outstanding performance.Precision casting can be used to make integrated near-net-shape components with complex thin-walled structures,which will further promote the engineering application of Ti-based alloys. In this paper,the research progress of Tibased alloys,e. g.,high-temperature Ti-based alloys,high-strength Ti-based alloys,TiAl-based alloys,Ti-based matrix composites,and their precision casting technologies are reviewed. In addition,the development directions of Tibased alloys are presented based on the application status of Ti-based alloys in the aerospace field. 展开更多
关键词 high-performance ti-based alloy TiAl-based alloy ti-based matrix composite precision casting AEROSPACE
下载PDF
Preparation and Characterization of Raw and Chemically Modified Sponge-Gourd Fiber Reinforced Polylactic Acid Biocomposites
12
作者 Taimur -Al-Mobarak Md. Abdul Gafur Md. Forhad Mina 《Materials Sciences and Applications》 2018年第2期281-304,共24页
This research work has been undertaken to fabricate environmentally friendly biocomposites for biomedical and household applications. Sponge-gourd fibers (SGF) obtained from Luffa cylindrica plant were chemically trea... This research work has been undertaken to fabricate environmentally friendly biocomposites for biomedical and household applications. Sponge-gourd fibers (SGF) obtained from Luffa cylindrica plant were chemically treated separately using 5 and 10 wt% NaOH, acetic anhydride and benzoyl chloride solutions. SGF reinforced polylactic acid (PLA) biocomposites were fabricated using melt compounding technique. Surface morphological, structural, mechanical and thermal properties, as well as antibacterial activities of raw and chemically modified SGF reinforced PLA (SGF-PLA) composites were characterized by field emission scanning electron microscopy, Fourier transform infrared spectrometry, X-ray diffractometry, universal testing method, thermogravimetry, and Kirby-Bauer agar diffusion method, respectively. Surface morphology indicates that after treatment of fibers, the interfacial adhesion between PLA and fibers is improved. X-ray diffractometry result shows that chemical treatment of fibers improves the crystallinity and exhibits new chemical bond formation in the composites. After chemical treatment, compressive strength of the composites is found to increase by 10% - 35%. The thermal stability of the treated fiber reinforced composites is also found to increase significantly. The composites have no antibacterial activities and no cytotoxic effect on non-cancer cell line. Soil burial test has confirmed that the composites are biodegradable. Benzoyl chloride treatment of fibers shows superior mechanical properties and enhances thermal stability among the composites. 展开更多
关键词 Sponge-Gourd Fiber Polylactic Acid Chemical MODIFICATION biocomposites ANTIBACTERIAL Activities
下载PDF
Chitosan/Nanocrystalline Cellulose Biocomposites Based on Date Palm (Phoenix Dactylifera L.) Sheath Fibers
13
作者 Abeer M.Adel Amira M.El-Shafei +1 位作者 Atef A.Ibrahim Mona T.Al-Shemy 《Journal of Renewable Materials》 SCIE 2019年第6期567-582,共16页
In this study,nanocrystalline celluloses were used to enhance physical,mechanical and water vapor barrier properties of chitosan films for potential food packaging applications.Two different mineral acids(sulfuric and... In this study,nanocrystalline celluloses were used to enhance physical,mechanical and water vapor barrier properties of chitosan films for potential food packaging applications.Two different mineral acids(sulfuric and phosphoric)were used to extract nanocrystalline cellulose from date palm sheath fibers.The influence of cellulose I and cellulose II on the properties of the isolated nanocrystalline celluloses(e.g.,yield,energy and length of intra-and intermolecular hydrogen bonds,and degree of substitution)were studied too.The characteristics of chitosan biocomposite film with phosphorylated nanocrystalline cellulose were compared to those with sulfated nanocrystalline cellulose.Results showed that besides cellulose polymorphism,the ionic ester groups on the surface of nanocrystalline cellulose is one of the factors influencing the physical,chemical,mechanical,and water vapor barrier properties in chitosan/nanocrystalline cellulose biocomposites. 展开更多
关键词 biocompositE Cellulose I Cellulose II Nanocrystalline cellulose(NCC) physico-mechanical properties Thermal stability
下载PDF
Reactive Compatibilization of Short-Fiber Reinforced Poly(lactic acid)Biocomposites
14
作者 Phornwalan Nanthananon Manus Seadan +2 位作者 Sommai Pivsa-Art Hiroyuki Hamada Supakij Suttiruengwong 《Journal of Renewable Materials》 SCIE 2018年第6期573-583,共11页
Poor interfacial adhesion between biobased thermoplastics and natural fibers is recognized as a major drawback for biocomposites.To be applicable for the large-scale production,a simple method to handle is of importan... Poor interfacial adhesion between biobased thermoplastics and natural fibers is recognized as a major drawback for biocomposites.To be applicable for the large-scale production,a simple method to handle is of importance.This work presented poly(lactic acid)(PLA)reinforced with short-fiber and three reactive agents including anhydride and epoxide groups were selected as compatibilizers.Biocomposites were prepared by one-step meltmixing methods.The influence of reactive agents on mechanical,dynamic mechanical properties and morphology of PLA biocomposites were investigated.Tensile strength and storage modulus of PLA biocomposites incorporated with epoxide-based reactive agent was increased 13.9%and 37.4%compared to non-compatibilized PLA biocomposite,which was higher than adding anhydride-based reactive agent.SEM micrographs and Molau test exhibited an improvement of interfacial fiber-matrix adhesion in the PLA biocomposites incorporated with epoxide-based reactive agent.FTIR revealed the chemical reaction between the fiber and PLA with the presence of epoxide-based reactive agents. 展开更多
关键词 biocompositE poly(lactic acid) Reactive agent in situ compatibilization interfacial adhesion
下载PDF
Hybrid Method for the Formation of Biocomposites on the Surface of Stainless Steel Implants
15
作者 Sergei I. Tverdokhlebov Viktor P. Ignatov +2 位作者 Igor B. Stepanov Denis O. Sivin Danila G. Petlin 《Engineering(科研)》 2012年第10期613-618,共6页
This study reports a hybrid method which allows the formation of biocomposites on stainless steel implants. The main idea of the method is to create multilayer coatings consisting of titanium primer layer and a microa... This study reports a hybrid method which allows the formation of biocomposites on stainless steel implants. The main idea of the method is to create multilayer coatings consisting of titanium primer layer and a microarc calcium-phosphate coating. The titanium layer is deposited from plasma of continuous vacuum-arc discharge, and calcium-phosphate coating is formed by the microarc oxidation technique. The purpose of the hybrid method is to combine the properties of good strength stainless steel with high bioactivity of calcium-phosphate coating. This paper describes the chemical composition, morphology characteristics, adhesion and the ability of the formed biocomposites to stimulate the processes of osteoinduction. It is expedient to use such biocomposites for implants which carry heavy loads and are intended for long-term use, e.g. total knee endoprosthesis. 展开更多
关键词 biocompositE STAINLESS Steel Titanium VACUUM-ARC Deposition of Coatings SHORT-PULSE High-Frequency Plasma-Immersion Ion Implantation Microarc Oxidation Implant
下载PDF
Recent Advances on Preparation Method of Ti-Based Hydrogen Storage Alloy
16
作者 Lina Liang Feng Wang +4 位作者 Maohua Rong Zhongmin Wang Songtao Yang Jiang Wang Huaiying Zhou 《Journal of Materials Science and Chemical Engineering》 2020年第12期18-38,共21页
Ti-based hydrogen storage alloy is one of the most common solid-state hydrogen storage materials due to its high hydrogen absorption capacity, low dehydrogenation temperature and rich resources. This paper mainly pres... Ti-based hydrogen storage alloy is one of the most common solid-state hydrogen storage materials due to its high hydrogen absorption capacity, low dehydrogenation temperature and rich resources. This paper mainly presents the influence of several different preparation methods of Ti-based hydrogen storage alloys on the hydrogen storage performance including traditional preparation methods (smelting, rapid quenching and mechanical alloying) and novel methods by plastic deformation (cold rolling, equal channel angular pressing and high-pressure torsion). The microstructure analysis and hydrogen storage properties of Ti-based alloy are summarized thoroughly corresponding with the preparation processes mentioned above. It was found that slight introduction of lattice defects including dislocation, grain boundary, sub-grain boundary and cracks by severe plastic deformation (SPD) was beneficial to improve the hydriding/dehydriding kinetic characteristic. However, the nonuniform composition and residual stress of the alloy may be caused by SPD, which is not conducive to the improvement of hydrogen storage capacity. In the future, it would be expected that new methods and technologies combined with dopant and modification are applied to Ti-based hydrogen storage alloys to make breakthroughs in practical application. 展开更多
关键词 ti-based Alloy Preparation Methods Hydrogen Storage Performance Severe Plastic Deformation Lattice Defects
下载PDF
Starch/Cellulose Biocomposites Prepared by High-Shear Homogenization/Compression Molding
17
作者 Saniwan Srithongkham Lalita Vivitchanont Chularat Krongtaew 《材料科学与工程(中英文B版)》 2012年第4期213-222,共10页
关键词 半纤维素 木薯淀粉 高剪切 生物材料 压缩 均质 生物复合材料 成型法
下载PDF
汉麻混凝土制备及性能研究
18
作者 杨青峰 赵红 《天津造纸》 2024年第1期34-38,共5页
汉麻混凝土是由汉麻秆芯和石灰等形成的生物复合材料。利用正交实验分析了汉麻含量、石灰含量和施压时间三因素对汉麻混凝土力学性能和保温性能的影响。结果表明:影响汉麻混凝土保温性能的因素依次为汉麻含量、石灰含量、施压时间,当汉... 汉麻混凝土是由汉麻秆芯和石灰等形成的生物复合材料。利用正交实验分析了汉麻含量、石灰含量和施压时间三因素对汉麻混凝土力学性能和保温性能的影响。结果表明:影响汉麻混凝土保温性能的因素依次为汉麻含量、石灰含量、施压时间,当汉麻含量为45%,石灰含量为45%,施压时间为10min时,混凝土的保温性能最优;影响汉麻混凝土力学性能的因素依次为汉麻含量、石灰含量、施压时间,当汉麻含量为15%、石灰含量为15%、施压时间为30min时,混凝土的抗压性能最优;通过加入适量汉麻秆芯,在满足抗压条件的前提下提高了混凝土的保温性能,不仅实现了生物质废弃物的回收利用,又能节能和保护环境。 展开更多
关键词 汉麻 正交实验 生物复合材料 混凝土
下载PDF
Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review
19
作者 Guiyang Zheng Xuelian Kang +7 位作者 Haoran Ye Wei Fan Christian Sonne Su Shiung Lam Rock Keey Liew Changlei Xia Yang Shi Shengbo Ge 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第4期73-85,共13页
Humans have relied on biomass for survival and development since the Stone Age. All aspects of human needs for materials are covered by tools, fuel, and buildings. Nowadays, metals and petroleum-based materials are wi... Humans have relied on biomass for survival and development since the Stone Age. All aspects of human needs for materials are covered by tools, fuel, and buildings. Nowadays, metals and petroleum-based materials are widely used in highly developed industries. Unfortunately, environmental contamination and the loss of natural resources have led to the reemergence of biomass resources as efficient and sustainable energy sources. Notably, simple and direct applications can no longer meet the demand for functionalization, high performance of materials and construction materials. Therefore, it is imperative to modify biomass and combine its utilisation to produce functionalization and high performance materials. For example, construction materials with superior mechanical properties and water resistance can be produced by reinforcing fibres to facilitate crosslinking. Water-oil separation or adsorption effects of hydrogels and aerogels are determined by the porosity and lightness of biomass, biocomposite conductor is prepared by chimaeric conductive material. Here, we review the approaches that have been taken to devise an environmentally friendly yet fully recyclable and sustainable functionalised biocomposites from biomass and its potential directions for future research. 展开更多
关键词 biocompositE RENEWABLE Sustainability Advanced functional material Pollution mitigation
原文传递
植物纤维生物复合材料界面改性研究进展
20
作者 常瑶 李万利 《化工新型材料》 CAS CSCD 北大核心 2024年第7期45-50,共6页
植物纤维具有来源广泛、成本低廉、可再生、可降解等诸多优点,广泛应用于生物复合材料。但是植物纤维表面存在大量羟基基团,与树脂基体相容性差,因此提高纤维与基体之间的界面粘结强度对于提高植物纤维生物复合材料力学性能具有重要作... 植物纤维具有来源广泛、成本低廉、可再生、可降解等诸多优点,广泛应用于生物复合材料。但是植物纤维表面存在大量羟基基团,与树脂基体相容性差,因此提高纤维与基体之间的界面粘结强度对于提高植物纤维生物复合材料力学性能具有重要作用。总结了近年来植物纤维生物复合材料界面改性的研究进展,重点介绍了植物纤维表面改性、基体树脂改性和相容剂法,并展望了植物纤维生物复合材料未来的发展方向。 展开更多
关键词 植物纤维 生物复合材料 界面改性 表面改性 基体树脂改性 相容剂
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部