The interfacial reaction behavior of Al and Ti_3AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the add...The interfacial reaction behavior of Al and Ti_3AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the addition of3.0 wt.%Ti_3AlC_(2)refines the average grain size ofα(Al)in the composite by 50.1%compared to Al6061 alloy.Morphological analyses indicate that an in-situ Al_(3Ti)transition layer of-180 nm in thickness is generated around the edge of Ti_3AlC_(2)at 720℃,forming a well-bonded Al-Al_(3Ti)interface.At this processing temperature,the ultimate tensile strength of A16061-3.0 wt.%Ti_3AlC_(2)composite is 199.2 MPa,an improvement of 41.5%over the Al6061 matrix.Mechanism analyses further elucidate that 720℃is favourable for forming the nano-sized transition layer at the Ti_3AlC_(2)edges.And,the thermal mismatch strengthening plays a dominant role in this state,with a strengthening contribution of about 74.8%.展开更多
By using the spark plasma sintering process, Ti2AlC/TiAlcomposite with the addition of Niobium (Nb) was prepared in-situ and the microstructure of Ti2AlC/TiAl (Nb) composite was investigated by means of transmissi...By using the spark plasma sintering process, Ti2AlC/TiAlcomposite with the addition of Niobium (Nb) was prepared in-situ and the microstructure of Ti2AlC/TiAl (Nb) composite was investigated by means of transmission electron microscopy (TEM) and high-resolution electron microscopy (HREM). The results indicate that new-formed Ti2AIC particles disperse with a high degree of uniformity and well combine with the matrix. In the area of phase interface the d-spaces of Ti2AlC (100) and TiAI (110) were measured as 0.2648 nm and 0.2991 nm,respectively. The atom arrangement beside the interface was only partly corresponding, existing in semicoherent state. On the contrary, in the area of grain interface the d-spaces of TiAl (100) and TiAl (110) were measured as 0.2462 nm and 0.2631 nm,respectively and the atom arrangement beside the interface was almost corresponding, existing in coherent state.展开更多
Ti_(2)AlC/TiAl composites with different volume fractions were prepared by hot pressing technology,and their reinforced structural characteristics and mechanical properties were evaluated.The results showed that when ...Ti_(2)AlC/TiAl composites with different volume fractions were prepared by hot pressing technology,and their reinforced structural characteristics and mechanical properties were evaluated.The results showed that when the reinforced phase volume fraction of Ti_(2)AlC was 20%,three-dimensional interpenetrating network structures were formed in the composites.Above 20%,Ti_(2)AlC phase in the composites accumulated and grew to form thick skeletal networks.The microplastic deformation behavior of Ti_(2)AlC phase,such as kink band and delamination,improved the fracture toughness of the composites.Comparative analysis indicated that the uniform and small interconnecting network structures could further reinforce the composites.The bending strengths of composites prepared with 20 vol.%Ti_(2)AlC reached(900.9±45.0)MPa,which was 25.5% higher than that of TiAl matrix.In general,the co-continuous Ti_(2)AlC/TiAl composite with excellent mechanical properties can be prepared by powder metallurgy method.展开更多
Porous preforms were fabricated by cold-pressing process using powder mixture of TiC,TiO2 and dextrin.After pyrolysis and sintering,Al melt was infiltrated into the porous preforms,leading to the formation of Ti3AlC2-...Porous preforms were fabricated by cold-pressing process using powder mixture of TiC,TiO2 and dextrin.After pyrolysis and sintering,Al melt was infiltrated into the porous preforms,leading to the formation of Ti3AlC2-Al2O3-TiAl3 composite.Effects of cold-pressing pressure of preforms on microstructures and mechanical properties of the composites were studied.Synthesis mechanism and toughening mechanism of composite were also analyzed.The results shows that TiO2 is reduced into Ti2O3 by carbon,the decomposition product of dextrin,which causes the spontaneous infiltration of Al melt into TiC/Ti2O3 preform.Then, Ti3AlC2-Al2O3-TiAl3 composite is in-situ formed from the simultaneous reaction of Al melt with TiC and Ti2O3.With the increase of cold-pressing pressure from 10 MPa to 40 MPa,the pore size distribution of the preforms becomes increasingly uniform after pre-sintering,which results in the reduction of defects,and the decrease of property discrepancy of composites.Nano-laminated Ti3AlC2 grains and Al2O3 particles make the fracture toughness of TiAl3 increase remarkably by various toughening mechanisms including stress-induced microcrack,crack deflection and crack bridging.展开更多
Microstructures of Ti2AlN/TiAl composites prepared by in-situ method were characterized in in-situ and aging treatment conditions and the nitride precipitation was investigated in Ti2AlN/TiAl composites aged at 900 ℃...Microstructures of Ti2AlN/TiAl composites prepared by in-situ method were characterized in in-situ and aging treatment conditions and the nitride precipitation was investigated in Ti2AlN/TiAl composites aged at 900 ℃ for 24 h after being heat treated at 1400 ℃ for 0.5 h. The in-situ composites consist of γ+α2 lamellar colonies, equiaxed y grains and Ti2AlN reinforcements. Matrix with nearly fully lamellar structure formed after solution and subsequently aging treatment. With the increase of Ti2AlN content, the nearly fully lamellar structure becomes instable for the aged composites. According to TEM study, fine Ti2AlN precipitates are found to distribute at the grain boundaries of lamellar colony. Needle-like Ti3AlN precipitates arrange in line with growing axis parallel to [001] direction of the γ-TiAl matrix and another needle-like Ti3AlN precipitates with lager size distribute at the dislocations. Key words:展开更多
TiAl/Ti2AlC composites were prepared by in-situ hot pressing of TilAl/C powders mixtures and sintered at different temperatures were investigated by X- ray diffraction ( XRD ) of samples. The reaction procedure of T...TiAl/Ti2AlC composites were prepared by in-situ hot pressing of TilAl/C powders mixtures and sintered at different temperatures were investigated by X- ray diffraction ( XRD ) of samples. The reaction procedure of Ti-Al-C system could be divided into three stnges. Below 900℃ , Ti reacts with Al to form TiAl intermetallics ; above 900 ℃ , C reacts with remain Ti to form TiC triggered by the exothermal reaction of Ti and Al ; TiAl reacts with TiC to produce dense TiAl/Ti2AlC compasites.In the holding stage, ternary Ti2AlC develops to layered polycrystal and composites pyknosis in the meanwhile. The mechanism of synthesis and microstructure was especially discussed.展开更多
The fabrication process of Sm2O3 doped CeO2 reinforced Ti3AlC2 nano composites including the nano particle dispersion process by a hetero-coagulation process was developed using in-situ synthesis and densification pro...The fabrication process of Sm2O3 doped CeO2 reinforced Ti3AlC2 nano composites including the nano particle dispersion process by a hetero-coagulation process was developed using in-situ synthesis and densification process of Ti3AlC2. The effects of Sm2O2 doped CeO2 nano particles on mechanical properties of Ti3AlC2 were investigated. It was found that the presence of 20SDC nano particles in Ti3AlC2 was very effective to improve the mechanical properties of Ti3AlC2 without spoiling the unique characteristics of Ti3AlC2temary carbide.展开更多
Cu/Ti2AlC composites were fabricated by vacuum hot-pressing technique. Phase composition was analyzed by XRD and morphology of fracture was observed by SEM. Physical performance such as density, resistivity, hardness ...Cu/Ti2AlC composites were fabricated by vacuum hot-pressing technique. Phase composition was analyzed by XRD and morphology of fracture was observed by SEM. Physical performance such as density, resistivity, hardness and friction coefficient with different volume fraction of Cu/Ti2AlC composites were studied. When the content of Ti2AlC increased from 10% to 70%, the relative density reduced from 99.38% to 90.56% and the resistivity increased significantly. Hardness reached the maximum value when Ti2AlC was at 60% and friction coefficient declined with the increasing of Ti2AlC. Cu/Ti2AlC composites, showing good conductivity properties and friction performance. Oxidation resistance enhanced obviously with the content of Ti2AlC increasing. Cu-60%Ti2AlC sample possessed optimum thermal shock resistance, and no cracking was found at 600 ℃ cycled for 10 times and 900 ℃ cycled for 1 time.展开更多
Microstructure stability of in situ synthesized Ti2AlN/Ti-48Al-2Cr-2Nb composite during aging at 900 ℃ was investigated by XRD, OM and TEM, and the unreinforced Ti-48Al-2Cr-2Nb alloy was also examined for comparison....Microstructure stability of in situ synthesized Ti2AlN/Ti-48Al-2Cr-2Nb composite during aging at 900 ℃ was investigated by XRD, OM and TEM, and the unreinforced Ti-48Al-2Cr-2Nb alloy was also examined for comparison. The result showed that in the TiAl alloy,α2 lamellae thinned and were broken down, and became discontinuous with increasing aging time. The decomposition ofα2 lamella toγ which was characterized by parallel decomposition and breakdown ofα2 lamellae led to the degradation of the lamellar structure. While in the composite, lamellar structure remained relatively stable even after aging at 900 ℃ for 100 h. No breakdown ofα2 lamellae except parallel decomposition and precipitation of fine nitride particles was observed. The better microstructural stability of the composite was mainly attributed to the precipitation of Ti2AlN particles at theα2/γ interface which played an important role in retarding the coarsening of lamellar microstructure in the matrix of composite.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51965040)Science and Technology Project of Jiangxi Provincial Department of Transportation,China(No.2022H0048)。
文摘The interfacial reaction behavior of Al and Ti_3AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the addition of3.0 wt.%Ti_3AlC_(2)refines the average grain size ofα(Al)in the composite by 50.1%compared to Al6061 alloy.Morphological analyses indicate that an in-situ Al_(3Ti)transition layer of-180 nm in thickness is generated around the edge of Ti_3AlC_(2)at 720℃,forming a well-bonded Al-Al_(3Ti)interface.At this processing temperature,the ultimate tensile strength of A16061-3.0 wt.%Ti_3AlC_(2)composite is 199.2 MPa,an improvement of 41.5%over the Al6061 matrix.Mechanism analyses further elucidate that 720℃is favourable for forming the nano-sized transition layer at the Ti_3AlC_(2)edges.And,the thermal mismatch strengthening plays a dominant role in this state,with a strengthening contribution of about 74.8%.
基金Funded by the Shandong Provincial Natural Science Foundation (No.22003F02)
文摘By using the spark plasma sintering process, Ti2AlC/TiAlcomposite with the addition of Niobium (Nb) was prepared in-situ and the microstructure of Ti2AlC/TiAl (Nb) composite was investigated by means of transmission electron microscopy (TEM) and high-resolution electron microscopy (HREM). The results indicate that new-formed Ti2AIC particles disperse with a high degree of uniformity and well combine with the matrix. In the area of phase interface the d-spaces of Ti2AlC (100) and TiAI (110) were measured as 0.2648 nm and 0.2991 nm,respectively. The atom arrangement beside the interface was only partly corresponding, existing in semicoherent state. On the contrary, in the area of grain interface the d-spaces of TiAl (100) and TiAl (110) were measured as 0.2462 nm and 0.2631 nm,respectively and the atom arrangement beside the interface was almost corresponding, existing in coherent state.
基金the financial supports from the National Natural Science Foundation of China(No.52065009)the Joint Funds of the Science and Technology Foundation of Guizhou Province,China(No.20157219)the Science and Technology Planning Project of Guizhou Province,China(No.20191069).
文摘Ti_(2)AlC/TiAl composites with different volume fractions were prepared by hot pressing technology,and their reinforced structural characteristics and mechanical properties were evaluated.The results showed that when the reinforced phase volume fraction of Ti_(2)AlC was 20%,three-dimensional interpenetrating network structures were formed in the composites.Above 20%,Ti_(2)AlC phase in the composites accumulated and grew to form thick skeletal networks.The microplastic deformation behavior of Ti_(2)AlC phase,such as kink band and delamination,improved the fracture toughness of the composites.Comparative analysis indicated that the uniform and small interconnecting network structures could further reinforce the composites.The bending strengths of composites prepared with 20 vol.%Ti_(2)AlC reached(900.9±45.0)MPa,which was 25.5% higher than that of TiAl matrix.In general,the co-continuous Ti_(2)AlC/TiAl composite with excellent mechanical properties can be prepared by powder metallurgy method.
基金Project(50802074)supported by the National Natural Science Foundation of ChinaProject(W016147)supported by the Sci-tech Innovation Foundation of Northwestern Polytechnical University,China
文摘Porous preforms were fabricated by cold-pressing process using powder mixture of TiC,TiO2 and dextrin.After pyrolysis and sintering,Al melt was infiltrated into the porous preforms,leading to the formation of Ti3AlC2-Al2O3-TiAl3 composite.Effects of cold-pressing pressure of preforms on microstructures and mechanical properties of the composites were studied.Synthesis mechanism and toughening mechanism of composite were also analyzed.The results shows that TiO2 is reduced into Ti2O3 by carbon,the decomposition product of dextrin,which causes the spontaneous infiltration of Al melt into TiC/Ti2O3 preform.Then, Ti3AlC2-Al2O3-TiAl3 composite is in-situ formed from the simultaneous reaction of Al melt with TiC and Ti2O3.With the increase of cold-pressing pressure from 10 MPa to 40 MPa,the pore size distribution of the preforms becomes increasingly uniform after pre-sintering,which results in the reduction of defects,and the decrease of property discrepancy of composites.Nano-laminated Ti3AlC2 grains and Al2O3 particles make the fracture toughness of TiAl3 increase remarkably by various toughening mechanisms including stress-induced microcrack,crack deflection and crack bridging.
基金Project(2011CB605502)supported by the National Basic Research Program of ChinaProject(51001086)supported by the National Natural Science Foundation of China
文摘Microstructures of Ti2AlN/TiAl composites prepared by in-situ method were characterized in in-situ and aging treatment conditions and the nitride precipitation was investigated in Ti2AlN/TiAl composites aged at 900 ℃ for 24 h after being heat treated at 1400 ℃ for 0.5 h. The in-situ composites consist of γ+α2 lamellar colonies, equiaxed y grains and Ti2AlN reinforcements. Matrix with nearly fully lamellar structure formed after solution and subsequently aging treatment. With the increase of Ti2AlN content, the nearly fully lamellar structure becomes instable for the aged composites. According to TEM study, fine Ti2AlN precipitates are found to distribute at the grain boundaries of lamellar colony. Needle-like Ti3AlN precipitates arrange in line with growing axis parallel to [001] direction of the γ-TiAl matrix and another needle-like Ti3AlN precipitates with lager size distribute at the dislocations. Key words:
文摘TiAl/Ti2AlC composites were prepared by in-situ hot pressing of TilAl/C powders mixtures and sintered at different temperatures were investigated by X- ray diffraction ( XRD ) of samples. The reaction procedure of Ti-Al-C system could be divided into three stnges. Below 900℃ , Ti reacts with Al to form TiAl intermetallics ; above 900 ℃ , C reacts with remain Ti to form TiC triggered by the exothermal reaction of Ti and Al ; TiAl reacts with TiC to produce dense TiAl/Ti2AlC compasites.In the holding stage, ternary Ti2AlC develops to layered polycrystal and composites pyknosis in the meanwhile. The mechanism of synthesis and microstructure was especially discussed.
文摘The fabrication process of Sm2O3 doped CeO2 reinforced Ti3AlC2 nano composites including the nano particle dispersion process by a hetero-coagulation process was developed using in-situ synthesis and densification process of Ti3AlC2. The effects of Sm2O2 doped CeO2 nano particles on mechanical properties of Ti3AlC2 were investigated. It was found that the presence of 20SDC nano particles in Ti3AlC2 was very effective to improve the mechanical properties of Ti3AlC2 without spoiling the unique characteristics of Ti3AlC2temary carbide.
基金Funded by Hubei Province Natural Science Foundation(No.2012FFB00608)the Youth Science and Technology Morning Program of Wuhan(No.201150431129)+1 种基金the Youth Science and Technology Program of Hubei Province Education Department(No.20121407)National Natural Science Foundation of China(No.51273059)
文摘Cu/Ti2AlC composites were fabricated by vacuum hot-pressing technique. Phase composition was analyzed by XRD and morphology of fracture was observed by SEM. Physical performance such as density, resistivity, hardness and friction coefficient with different volume fraction of Cu/Ti2AlC composites were studied. When the content of Ti2AlC increased from 10% to 70%, the relative density reduced from 99.38% to 90.56% and the resistivity increased significantly. Hardness reached the maximum value when Ti2AlC was at 60% and friction coefficient declined with the increasing of Ti2AlC. Cu/Ti2AlC composites, showing good conductivity properties and friction performance. Oxidation resistance enhanced obviously with the content of Ti2AlC increasing. Cu-60%Ti2AlC sample possessed optimum thermal shock resistance, and no cracking was found at 600 ℃ cycled for 10 times and 900 ℃ cycled for 1 time.
基金Project(2011CB605502)supported by the National Basic Research Program of ChinaProject(B08040)supported by Introducing Talents of Discipline to Universities,China
文摘Microstructure stability of in situ synthesized Ti2AlN/Ti-48Al-2Cr-2Nb composite during aging at 900 ℃ was investigated by XRD, OM and TEM, and the unreinforced Ti-48Al-2Cr-2Nb alloy was also examined for comparison. The result showed that in the TiAl alloy,α2 lamellae thinned and were broken down, and became discontinuous with increasing aging time. The decomposition ofα2 lamella toγ which was characterized by parallel decomposition and breakdown ofα2 lamellae led to the degradation of the lamellar structure. While in the composite, lamellar structure remained relatively stable even after aging at 900 ℃ for 100 h. No breakdown ofα2 lamellae except parallel decomposition and precipitation of fine nitride particles was observed. The better microstructural stability of the composite was mainly attributed to the precipitation of Ti2AlN particles at theα2/γ interface which played an important role in retarding the coarsening of lamellar microstructure in the matrix of composite.