Taking a Ti−5Al−5Mo−5V−1Cr−1Fe alloy as exemplary case,the fatigue crack growth sensitivity and fracture features with various tailoredαphase morphologies were thoroughly investigated using fatigue crack growth rate(...Taking a Ti−5Al−5Mo−5V−1Cr−1Fe alloy as exemplary case,the fatigue crack growth sensitivity and fracture features with various tailoredαphase morphologies were thoroughly investigated using fatigue crack growth rate(FCGR)test,optical microscopy(OM)and scanning electron microscopy(SEM).The tailored microstructures by heat treatments include the fine and coarse secondaryαphase,as well as the widmanstatten and basket weave features.The sample with coarse secondaryαphase exhibits better comprehensive properties of good crack propagation resistance(with long Paris regime ranging from 15 to 60 MPa·m1/2),high yield strength(1113 MPa)and ultimate strength(1150 MPa),and good elongation(11.6%).The good crack propagation resistance can be attributed to crack deflection,long secondary crack,and tortuous crack path induced by coarse secondaryαphase.展开更多
The microstructural evolution, mechanical properties and fracture mechanism of a Ti.5Al.5Mo.5V.3Cr.1Zr (Ti-55531) alloy after solution (760.820℃) plus aging (580.640℃) treatments were investigated. The results show ...The microstructural evolution, mechanical properties and fracture mechanism of a Ti.5Al.5Mo.5V.3Cr.1Zr (Ti-55531) alloy after solution (760.820℃) plus aging (580.640℃) treatments were investigated. The results show that the volume fraction of the primary α(αp) phase decreases with the increase of solution temperature, and the length of the secondary α phase (αs) decreases while its width increases with the increase of aging temperature. Yield and tensile strengths decrease with the increase of solution temperature, while increase with the increase of aging temperature. A good balance of tensile strength and ductility of the alloy is obtained under solution of 800℃ for 2 h plus aging of 640℃ for 8 h, in which the tensile strength is 1434 MPa and the elongation is 7.7%. The coarsening αs phase makes crack propagation paths deflected and tortuous, which increases the crack propagation resistance and improves the ductility and fracture toughness.展开更多
Split Hopkinson pressure bar test system was used to investigate the plastic deformation behavior and dynamic response character of a-type Ti–5Al–2.5Sn ELI and near a-type Ti–8Al–1Mo–1V titanium alloy when subjec...Split Hopkinson pressure bar test system was used to investigate the plastic deformation behavior and dynamic response character of a-type Ti–5Al–2.5Sn ELI and near a-type Ti–8Al–1Mo–1V titanium alloy when subjected to dynamic loading. In the present work, stress–strain curves at strain rate from 1.5 9 103to 5.0 9 103s-1were analyzed, and optical microscope(OM) was used to reveal adiabatic shearing behavior of recovered samples. Results show that both the two alloys manifest significant strain hardening effects. Critical damage strain rate of the two alloys is about 4.3 9 103s-1, under which the impact absorbs energy of Ti–5Al–2.5Sn ELI and Ti–8Al–1Mo–1V are 560 and 470 MJ m-3, respectively. Both of them fracture along the maximum shearing strength orientation, an angle of 45° to the compression axis. No adiabatic shear band(ASB) is found in Ti–5Al–2.5Sn ELI alloy, whereas several ASBs with different widths exist without regular direction in Ti–8Al–1Mo–1V alloy.展开更多
基金Project(U1867201)supported by the National Natural Science Foundation of ChinaProject supported by State Key Laboratory of Powder Metallurgy,Central South University,China。
文摘Taking a Ti−5Al−5Mo−5V−1Cr−1Fe alloy as exemplary case,the fatigue crack growth sensitivity and fracture features with various tailoredαphase morphologies were thoroughly investigated using fatigue crack growth rate(FCGR)test,optical microscopy(OM)and scanning electron microscopy(SEM).The tailored microstructures by heat treatments include the fine and coarse secondaryαphase,as well as the widmanstatten and basket weave features.The sample with coarse secondaryαphase exhibits better comprehensive properties of good crack propagation resistance(with long Paris regime ranging from 15 to 60 MPa·m1/2),high yield strength(1113 MPa)and ultimate strength(1150 MPa),and good elongation(11.6%).The good crack propagation resistance can be attributed to crack deflection,long secondary crack,and tortuous crack path induced by coarse secondaryαphase.
基金Project(SKLSP201853) supported by the Fund of the State Key Laboratory of Solidification Processing in NWPU,ChinaProject(51625505) supported by the National Science Fund for Distinguished Young Scholars of China+1 种基金Project(U1537203) supported by the Key Program Project of the Joint Fund of Astronomy and National Natural Science Foundation of ChinaProject(KYQD1801) supported by the Scientific Research Foundation of Tianjin University of Technology and Education,China
文摘The microstructural evolution, mechanical properties and fracture mechanism of a Ti.5Al.5Mo.5V.3Cr.1Zr (Ti-55531) alloy after solution (760.820℃) plus aging (580.640℃) treatments were investigated. The results show that the volume fraction of the primary α(αp) phase decreases with the increase of solution temperature, and the length of the secondary α phase (αs) decreases while its width increases with the increase of aging temperature. Yield and tensile strengths decrease with the increase of solution temperature, while increase with the increase of aging temperature. A good balance of tensile strength and ductility of the alloy is obtained under solution of 800℃ for 2 h plus aging of 640℃ for 8 h, in which the tensile strength is 1434 MPa and the elongation is 7.7%. The coarsening αs phase makes crack propagation paths deflected and tortuous, which increases the crack propagation resistance and improves the ductility and fracture toughness.
基金financially supported by the Ministry of Science and Technology of China (No. 2012DFG51540)
文摘Split Hopkinson pressure bar test system was used to investigate the plastic deformation behavior and dynamic response character of a-type Ti–5Al–2.5Sn ELI and near a-type Ti–8Al–1Mo–1V titanium alloy when subjected to dynamic loading. In the present work, stress–strain curves at strain rate from 1.5 9 103to 5.0 9 103s-1were analyzed, and optical microscope(OM) was used to reveal adiabatic shearing behavior of recovered samples. Results show that both the two alloys manifest significant strain hardening effects. Critical damage strain rate of the two alloys is about 4.3 9 103s-1, under which the impact absorbs energy of Ti–5Al–2.5Sn ELI and Ti–8Al–1Mo–1V are 560 and 470 MJ m-3, respectively. Both of them fracture along the maximum shearing strength orientation, an angle of 45° to the compression axis. No adiabatic shear band(ASB) is found in Ti–5Al–2.5Sn ELI alloy, whereas several ASBs with different widths exist without regular direction in Ti–8Al–1Mo–1V alloy.