The effect of friction pressure p and oxygen concentration xo on the fireproof performance of Ti40 titanium alloy was studied by frictional ignition test, the U--Xo relationship quantitatively describing the fireproof...The effect of friction pressure p and oxygen concentration xo on the fireproof performance of Ti40 titanium alloy was studied by frictional ignition test, the U--Xo relationship quantitatively describing the fireproof performance of Ti40 was established and the fireproof mechanism of Ti40 was analyzed by SEM, XRD and EDS. The results show that the p--xo relationship of Ti40 obeys parabolic rule. The varying range of xo is about 25% while p varies within 0.1-0.25 MPa. When Xo is 〉70%, Ti40 is ignited immediately at room temperature and develops into continual and steady burning, and the duration of burning is more than 10 s. The fireproof performance of Ti40 is better than TC4 while xo of Ti40 is at least 40% higher than TC4. When Xo is low, the fireproof performance of Ti40 is more sensitive to p; when Xo increases, it is more sensitive to Xo. The forming of fused oxides of V205, TiO2 and Cr203 with strong inner interaction during friction is the basic reason of high fireproof performance of Ti40.展开更多
Ti - 40 alloy is a single β phase burn resistant titanium alloy.Its high temperature deformation mech- anism is studied and its stress - strain curves are examined he use of Gleeble - 1500 thermal -simulator. The r...Ti - 40 alloy is a single β phase burn resistant titanium alloy.Its high temperature deformation mech- anism is studied and its stress - strain curves are examined he use of Gleeble - 1500 thermal -simulator. The results reveal that there are abrupt flow stress drops followed b steady state.The magnitude of the flow stress drop increases with strain rote and decreases with temperature.Deformation activation energy, Q, is 247. 5 KJ/mol. The deformation mechanism of Ti - 40 alloy is controlled by the lattice diffusion Its constitutive equation is set up, i. e.展开更多
Ti 40 alloy is a single β phase burn resistant titanium alloy. Its high temperature deformation mechanism and stress strain ( σ ε ) curves were studied by Gleeble 1500 thermal simulator. The results sugg...Ti 40 alloy is a single β phase burn resistant titanium alloy. Its high temperature deformation mechanism and stress strain ( σ ε ) curves were studied by Gleeble 1500 thermal simulator. The results suggest that there are a bit abrupt flow stress drops followed by steady state in Ti 40 alloy as annealing. The magnitude of the flow stress drop increases with strain rate and decreases with temperature. Its deformation activation energies are 174 kJ/mol for 650~850℃ and 276.7 kJ/mol for 950~1000℃, which are close to or bigger than the values for self and solute lattice diffusion in pure β titanium, thereby, the deformation mechanism at temperature range is controlled by lattice diffusion for 650~850℃, or mainly controlled by dynamic recrystallization for 950~1000℃.展开更多
基金Project(20123021004) supported by the Key Program of the Aeronautical Science Foundation of ChinaProject(51312030501) supported by the Pre-Research Program of China
文摘The effect of friction pressure p and oxygen concentration xo on the fireproof performance of Ti40 titanium alloy was studied by frictional ignition test, the U--Xo relationship quantitatively describing the fireproof performance of Ti40 was established and the fireproof mechanism of Ti40 was analyzed by SEM, XRD and EDS. The results show that the p--xo relationship of Ti40 obeys parabolic rule. The varying range of xo is about 25% while p varies within 0.1-0.25 MPa. When Xo is 〉70%, Ti40 is ignited immediately at room temperature and develops into continual and steady burning, and the duration of burning is more than 10 s. The fireproof performance of Ti40 is better than TC4 while xo of Ti40 is at least 40% higher than TC4. When Xo is low, the fireproof performance of Ti40 is more sensitive to p; when Xo increases, it is more sensitive to Xo. The forming of fused oxides of V205, TiO2 and Cr203 with strong inner interaction during friction is the basic reason of high fireproof performance of Ti40.
文摘Ti - 40 alloy is a single β phase burn resistant titanium alloy.Its high temperature deformation mech- anism is studied and its stress - strain curves are examined he use of Gleeble - 1500 thermal -simulator. The results reveal that there are abrupt flow stress drops followed b steady state.The magnitude of the flow stress drop increases with strain rote and decreases with temperature.Deformation activation energy, Q, is 247. 5 KJ/mol. The deformation mechanism of Ti - 40 alloy is controlled by the lattice diffusion Its constitutive equation is set up, i. e.
文摘Ti 40 alloy is a single β phase burn resistant titanium alloy. Its high temperature deformation mechanism and stress strain ( σ ε ) curves were studied by Gleeble 1500 thermal simulator. The results suggest that there are a bit abrupt flow stress drops followed by steady state in Ti 40 alloy as annealing. The magnitude of the flow stress drop increases with strain rate and decreases with temperature. Its deformation activation energies are 174 kJ/mol for 650~850℃ and 276.7 kJ/mol for 950~1000℃, which are close to or bigger than the values for self and solute lattice diffusion in pure β titanium, thereby, the deformation mechanism at temperature range is controlled by lattice diffusion for 650~850℃, or mainly controlled by dynamic recrystallization for 950~1000℃.