期刊文献+
共找到8,151篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of spark plasma sintering temperature on microstructure and mechanical properties of melt-spun TiAl alloys 被引量:1
1
作者 柴丽华 陈玉勇 +1 位作者 张来启 林均品 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第3期528-533,共6页
A TiAl alloy from pulverized rapidly solidified ribbons with the composition of Ti-46Al-2Cr-4Nb-0.3Y(mole fraction,%) was processed by spark plasma sintering(SPS).The effects of sintering temperature on the micros... A TiAl alloy from pulverized rapidly solidified ribbons with the composition of Ti-46Al-2Cr-4Nb-0.3Y(mole fraction,%) was processed by spark plasma sintering(SPS).The effects of sintering temperature on the microstructure and mechanical properties were studied.The results show that the microstructure and phase constitution vary with sintering temperature.Sintering the milled powders at 1200 ℃ produces fully dense compact.Higher sintering temperature does not improve the densification evidently.The dominant phases are γ and α2 in the bulk alloys sintered at 1200 ℃.With higher sintering temperature,the fraction of α2 phase decreases and the microstructure changes from equiaxed near γ grain to near lamellar structure,together with a slight coarsening.The bulk alloy sintered at 1260 ℃ with refined and homogeneous near lamellar structure reveals the best overall mechanical properties.The compressional fracture stress and compression ratio are 2984 MPa and 41.5%,respectively,at room temperature.The tensile fracture stress and ductility are 527.5 MPa and 5.9%,respectively,at 800 ℃. 展开更多
关键词 tial alloy rapid solidification spark plasma sintering microstructure mechanical properties
下载PDF
Microstructure Characteristics and Elevated Temperature Mechanical Properties of a B Containedβ-solidifiedγ-TiAl Alloy
2
作者 王秀琦 GUO Ruiqi +5 位作者 刘国怀 LI Tianrui YANG Yuxuan CHEN Yang XIN Meiling WANG Zhaodong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期738-746,共9页
The improved microstructure and enhanced elevated temperature mechanical properties of Ti-44Al-5Nb-(Mo,V,B)alloys were obtained by vacuum arc re-melting(VAR)and primary annealing heat treatment(HT)of 1260℃/6 h/Furnac... The improved microstructure and enhanced elevated temperature mechanical properties of Ti-44Al-5Nb-(Mo,V,B)alloys were obtained by vacuum arc re-melting(VAR)and primary annealing heat treatment(HT)of 1260℃/6 h/Furnace cooling(FC).The phase transformation,microstructure evolution and tensile properties for as-cast and HTed alloys were investigated.Results indicate that three main phase transformation points are determined,T_(eut)=1164.3℃,T_(γsolv)=1268.3℃and T_(βtrans)=1382.8℃.There are coarse lamellar colonies(300μm in length)and neighbor reticular B2 andγgrain(3-5μm)in as-cast alloy,while lamellar colonies are markedly refined and multi-oriented(20-50μm)as well as the volume fraction and grain sizes of equiaxedγand B2 phases(about 15μm)significantly increase in as-HTed alloy.Phase transformations involvingα+γ→α+γ+β/B2 and discontinuousγcoarsening contribute to the above characteristics.Borides(1-3μm)act as nucleation sites forβ_(eutectic) and produce massiveβgrains with different orientations,thus effectively refining the lamellar colonies and forming homogeneous multi-phase microstructure.Tensile curves show both the alloys exhibit suitable performance at 800℃.As-cast alloy shows a higher ultimate tensile stress of 647 MPa,while a better total elongation of more than 41%is obtained for as-HTed alloy.The mechanical properties improvement is mainly attributed to fine,multi-oriented lamellar colonies,coordinated deformation of homogeneous multi-phase microstructure and borides within lamellar interface preventing crack propagation. 展开更多
关键词 tial alloy phase transformation heat treatment BORIDE microstructure mechanical properties
下载PDF
Effect of thermal stabilization on microstructure and mechanical property of directionally solidified Ti-46Al-0.5W-0.5Si alloy 被引量:1
3
作者 樊江磊 李新中 +3 位作者 苏彦庆 陈瑞润 郭景杰 傅恒志 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第5期1073-1080,共8页
Effect of thermal stabilization on the microstructure and mechanical property of directionally solidified Ti-46Al-0.5W-0.5Si (mole fraction, %) alloy was investigated. The specimens were thermal stabilized for diffe... Effect of thermal stabilization on the microstructure and mechanical property of directionally solidified Ti-46Al-0.5W-0.5Si (mole fraction, %) alloy was investigated. The specimens were thermal stabilized for different time (t) and directionally solidified at a constant growth rate of 30 μm/s and temperature gradient of 20 K/mm. Dependencies of the primary dendritic spacing (λ1), secondary dendritic spacing (λ2), interlamellar spacing (λL) and microhardness (HV) on holding time were determined. The values of the λ1, λ2 and λL increase with the increase of t, and the value of HV decreases with the increase of t. The increase of t is helpful to obtain a good directional solidification structure. However, it reduces the mechanical property of the directionally solidified TiAl alloy. The optimized value of t is about 30 min. 展开更多
关键词 INTERMETALLICS tial-based alloy crystal growth microstructure evolution mechanical properties
下载PDF
Effects of annealing on microstructure and mechanical properties of γ-TiAl alloy fabricated via laser melting deposition 被引量:12
4
作者 Zhan-qi LIU Rui-xin MA +2 位作者 Guo-jian XU Wen-bo WANG Yun-hai SU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第4期917-927,共11页
The microstructure evolution and mechanical properties of the as-deposited γ-TiAl-based alloy specimen fabricated via laser melting deposition and as-annealed specimens at different temperatures were investigated.The... The microstructure evolution and mechanical properties of the as-deposited γ-TiAl-based alloy specimen fabricated via laser melting deposition and as-annealed specimens at different temperatures were investigated.The results show that the microstructure of as-deposited specimen is composed of fineα2(Ti3Al)+γlamellae.With the increase of annealing temperature,the bulk γ m(TiAl)phase gradually changes from single γ phase toγphase+acicularα2 phase,finally small γ phase+lamellar α2+γ phase.Compared with the mechanical properties of as-depositedγ-TiAl alloy(tensile strength 469 MPa,elongation 1.1%),after annealing at 1260℃ for 30 min followed by furnace cooling(FC),the room-temperature tensile strength of the specimen is 543.4 MPa and the elongation is 3.7%,which are obviously improved. 展开更多
关键词 laser melting deposition ANNEALING tial alloy microstructure evolution mechanical properties
下载PDF
Effects of Gd on microstructure and mechanical property of ZK60 magnesium alloy 被引量:1
5
作者 黄正华 戚文军 徐静 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第9期2568-2576,共9页
Microstructures and phase compositions of as-cast and extruded ZK60-xGd (x=0-4) alloys were investigated. Meanwhile, the tensile mechanical property was tested. With increasing the Gd content, as-cast microstructure... Microstructures and phase compositions of as-cast and extruded ZK60-xGd (x=0-4) alloys were investigated. Meanwhile, the tensile mechanical property was tested. With increasing the Gd content, as-cast microstructure is refined gradually. Mg-Zn-Gd new phase increases gradually, while MgZn2 phase decreases gradually to disappear. The second phase tends to distribute along grain boundary by continuous network. As-cast tensile mechanical property is reduced slightly at ambient temperature when the Gd content does not exceed 2.98%. After extrusion by extrusion ratio of 40 and extrusion temperature of 593 K, microstructure is refined further with decreasing the average grain size to 2 μm for ZK60-2.98Gd alloy. Broken second phase distributes along the extrusion direction by zonal shape. Extruded tensile mechanical property is enhanced significantly. Tensile strength values at 298 and 473 K increase gradually from 355 and 120 MPa for ZK60 alloy to 380 and 164 MPa for ZK60-2.98Gd alloy, respectively. Extruded tensile fractures exhibit a typical character of ductile fracture. 展开更多
关键词 ZK60 magnesium alloy Gd modification EXTRUSION microstructure mechanical property fracture morphology
下载PDF
Influence of Mo content on microstructure and mechanical properties of β-containing TiAl alloy 被引量:5
6
作者 Wen-chen XU Kai HUANG +2 位作者 Shi-feng WU Ying-ying ZONG De-bin SHAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第4期820-828,共9页
The influence of Mo content on the microstructure and mechanical properties of the Ti?45Al?5Nb?xMo?0.3Y(x=0.6,0.8,1.0,1.2)alloys was studied using small ingots produced by non-consumable electrode argon arc melting.Th... The influence of Mo content on the microstructure and mechanical properties of the Ti?45Al?5Nb?xMo?0.3Y(x=0.6,0.8,1.0,1.2)alloys was studied using small ingots produced by non-consumable electrode argon arc melting.The results show that smallquantities ofβphase are distributed alongγ/α2lamellar colony boundaries as discontinuous network in the TiAl alloys owing to thesegregation of Mo element.Theγphase forms in the interdentritic microsegregation area when the Mo addition exceeds0.8%.Theβandγphases can be eliminated effectively by subsequent homogenization heat treatment at the temperature above Tα.The evolutionof the strength,microhardness and ductility at different Mo contents under as-cast and as-homogenization treated conditions wasanalyzed,indicating that excessive Mo addition is prone to cause the microsegregation,thus decreasing the strength andmicrohardness obviously,which can be improved effectively by subsequent homogenization heat treatment. 展开更多
关键词 tial alloy β phase microstructure mechanical properties homogenization treatment
下载PDF
A high-Nb TiAl alloy with highly refined microstructure and excellent mechanical properties fabricated by electromagnetic continuous casting 被引量:3
7
作者 Yong-zhe Wang Hong-sheng Ding +3 位作者 Rui-run Chen Jing-jie Guo Heng-zhi Fu Jin-peng Lu 《China Foundry》 SCIE 2016年第5期342-345,共4页
In the present research, microstructure refinement of a high-Nb TiAl alloy (Ti-48Al-8Nb-0.15B) was realized by means of the electromagnetic continuous casting (EMCC) technique. The microstructure of an ingot obtai... In the present research, microstructure refinement of a high-Nb TiAl alloy (Ti-48Al-8Nb-0.15B) was realized by means of the electromagnetic continuous casting (EMCC) technique. The microstructure of an ingot obtained by EMCC was analyzed using scanning electron microscopy (SEM). As compared with the raw as-cast alloy, the obtained EMCC alloy presented a much finer microstructure with lamellar colonies with a mean size of about 50-70 μm because the electromagnetic stirring broke initial dendrites and enhanced the heterogeneous nucleation. As the grains were refined, the properties of the TiAl alloy were improved significantly. This implies that the EMCC technique could offer the possibility of application for high-Nb TiAl alloys with a refined microstructure and excellent properties to be used as a structural material. 展开更多
关键词 high-Nb tial alloy microstructure electromagnetic continuous casting mechanical properties
下载PDF
Effect of Trace La Addition on the Microstructure and Mechanical Property of As-cast ADC12 Al-Alloy 被引量:25
8
作者 黄昕 闫洪 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第1期202-205,共4页
The effects of addition of La on the microstructure of as-cast ADC12 A1-Alloy were investigated by using optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM), and energy disperse ... The effects of addition of La on the microstructure of as-cast ADC12 A1-Alloy were investigated by using optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM), and energy disperse spectroscopy (EDS). The experimental results showed that the a-A1 and eutectic Si crystals were modified with the addition of 0.3 wt% La. The eutectic Si crystals showed a granular distribution. At the same time, the alloy possessed the best mechanical property. When more than 0.3 wt% La was added to ADC12 aluminum alloy, the microstructure of as-cast alloy was coarsening gradually with the increase of the content of La and the mechanical property decreased. The effect of rare earth La which was added in ADC 12 A1-Alloy for up to 0.9 wt% had been investigated in this study. The dendrites ofADC12 Al-alloy was refined obviously and the morphology of Si crystals showed a particle structure when the addition of La reached 0,3 wt%. Besides, the acicular La-rich intermetallics in the alloy deteriorated the mechanical property of alloy: To avoid this unwanted phase, the amount of added rare earth La must be less than 0.6 wt%. 展开更多
关键词 as-cast ADC12 A1-alloy rare earth microstructure intermetallic compound mechanical property
下载PDF
Effect of Zr on microstructure and mechanical properties of binary TiAl alloys 被引量:2
9
作者 Rui-run CHEN Xiao-ye ZHAO +4 位作者 Yong YANG Jing-jie GUO Hong-sheng DING Yan-qing SU Heng-zhi FU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第9期1724-1734,共11页
Ti43Al and Ti47Al alloys with different contents of zirconium were prepared by non-consumable vacuum arc melting furnace.The microstructure and mechanical properties were investigated.The results showed that Zr had no... Ti43Al and Ti47Al alloys with different contents of zirconium were prepared by non-consumable vacuum arc melting furnace.The microstructure and mechanical properties were investigated.The results showed that Zr had no obvious effect on microstructure morphology of Ti43Al,while that of Ti47Al was modified from dendrites into equiaxed grains.The addition of Zr could refine the grains.Zr promoted the formation ofγphase significantly and the solubility values of Zr inγphase were 12.0%and 5.0%(molar fraction)in Ti43Al and Ti47Al,respectively.Zr-richγphase mainly formed throughβ→γin Ti43Al-xZr(molar fraction,%)andβ→α→γin Ti47Al-xZr(molar fraction,%).Fine-grain strengthening and solution strengthening were beneficial to improving the compressive strength while severe micro-segregation was detrimental to compressive properties.Large solubility of Zr was bad for ductility of alloys as well.The maximum compressive strengths of Ti43Al-xZr and Ti47Al-xZr were 1684.82 MPa(x=5.0%)and 2158.03 MPa(x=0.5%),respectively.The compressive strain fluctuated slightly in Ti43Al-xZr and reached the maximum value of 35.24%(x=0.5%)in Ti47Al-xZr.Both alloys showed brittle fracture. 展开更多
关键词 tial binary alloy ZIRCONIUM microstructure evolution phase transformation compressive properties
下载PDF
Effect of spinning deformation on microstructure evolution and mechanical property of TA15 titanium alloy 被引量:13
10
作者 徐文臣 单德彬 +3 位作者 王振龙 杨国平 吕炎 康达昌 《中国有色金属学会会刊:英文版》 EI CSCD 2007年第6期1205-1211,共7页
Hot spinning of tubular workpiece of TA15 alloy was conducted on a CNC spinning machine, and the microstructure evolution during hot spinning and annealing was observed and mechanical properties of spun tubes were tes... Hot spinning of tubular workpiece of TA15 alloy was conducted on a CNC spinning machine, and the microstructure evolution during hot spinning and annealing was observed and mechanical properties of spun tubes were tested. The results show that with the increase of spinning pass, the fiber microstructure comes into being gradually in axial direction and the circumferential microstructure also stretches obviously along circumferential direction. At the same time, the tensile strength increases and elongation decreases not only in axial direction but also in circumferential direction. When the reduction ratio of wall thickness rises close to or over 40%, tensile strength increases and elongation decreases more rapidly, which means that tubular workpiece of titanium alloy can be strengthened bi-directionally by power spinning. The ductility of spun workpiece of TA15 alloy could be improved by annealing at the temperature no higher than recrystallization temperature with slight decrease of tensile strength. 展开更多
关键词 钛合金 热自旋 微观结构 退火 机械性质
下载PDF
Effects of Bi on the microstructure and mechanical property of ZK60 alloy 被引量:2
11
作者 Zhenghua Huang Wanghanbo Liu +2 位作者 Wenjun Qi Jing Xu Nan Zhou 《Journal of Magnesium and Alloys》 SCIE EI CAS 2015年第1期29-35,共7页
Microstructures and phase compositions of as-cast and extruded ZK60-xBi(x=0-1.64)alloys were investigated.Meanwhile,the tensile mechanical property and hardness were tested.With increasing the Bi content,the as-cast m... Microstructures and phase compositions of as-cast and extruded ZK60-xBi(x=0-1.64)alloys were investigated.Meanwhile,the tensile mechanical property and hardness were tested.With increasing the Bi content,the as-cast microstructure is first refined obviously,and then becomes coarse slightly.New small block compound which is rich in Zr,Zn,Bi and poor in Mg increases gradually,and MgZn_(2) phase decreases gradually.The second phase mainly precipitates along the grain boundary.The as-cast tensile mechanical property is first enhanced obviously,where the tensile strengthσb,yield strengthσ0.2 and elongationδcan reach 265 MPa,151 MPa and 13.5%for ZK60-0.23Bi alloy,respectively,then remains the high value for ZK60-(0.37-1.09)Bi alloys,and finally decreases obviously for ZK60-1.64Bi alloy.After hot extrusion,the obvious dynamic recrystallization occurs.Broken block compound distributes along the extrusion direction by zonal shape.The average grain size can reach only 4-6μm.The extruded tensile mechanical property is enhanced significantly,where σ_(b),σ_(0.2) and δ are at the range of 345-360 MPa,285-300 MPa and 15.5-19.5%,respectively.Extruded tensile fracture exhibits a typical character of ductile fracture. 展开更多
关键词 ZK60 magnesium alloy Bi modification EXTRUSION microstructure mechanical property
下载PDF
Effect of hot plastic deformation on microstructure and mechanical property of Mg-Mn-Ce magnesium alloy 被引量:10
12
作者 简炜炜 康志新 李元元 《中国有色金属学会会刊:英文版》 EI CSCD 2007年第6期1158-1163,共6页
Hot plastic deformation was conducted using a new solid die on a Mg-Mn-Ce magnesium alloy. The results of microstructural examination through OM and TEM show that the grain size is greatly refined from 45 μm to 1.1 ... Hot plastic deformation was conducted using a new solid die on a Mg-Mn-Ce magnesium alloy. The results of microstructural examination through OM and TEM show that the grain size is greatly refined from 45 μm to 1.1 μm with uniform distribution due to the occurrence of dynamic recrystallization. The grain refinement and high angle grain boundary formation improve the mechanical properties through tensile testing with the strain rate of 1.0×10?4 s?1 at room temperature and Vickers microhardness testing. The maximum values of tensile strength, elongation and Vickers microhardness are increased to 256.37 MPa, 17.69% and HV57.60, which are 21.36%, 133.80% and 20.50% more than those of the as-received Mg-Mn-Ce magnesium alloy, respectively. The SEM morphologies of tensile fractured surface indicate that the density and size of ductile dimples rise with accumulative strain increasing. The mechanism of microstructural evolution and the relationship between microstructure and mechanical property of Mg-Mn-Ce magnesium alloy processed by this solid die were also analyzed. 展开更多
关键词 镁合金 热塑变形 微观结构 机械性质
下载PDF
Influence of Sr on microstructure evolution,mechanical and corrosion properties of extruded Mg-2Zn-0.5Ca alloy
13
作者 Junlong Qin Lili Chang Xiaojing Su 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3744-3757,共14页
Degradable Mg-Zn-Ca alloys with Sr addition were prepared by vacuum melting and hot extrusion.Effect of Sr on microstructure,mechanical and corrosion properties of hot extruded Mg-2Zn-0.5Ca-xSr(x=0,0.5,1.0)alloys was ... Degradable Mg-Zn-Ca alloys with Sr addition were prepared by vacuum melting and hot extrusion.Effect of Sr on microstructure,mechanical and corrosion properties of hot extruded Mg-2Zn-0.5Ca-xSr(x=0,0.5,1.0)alloys was investigated.The results show that Sr addition into Mg-2Zn-0.5Ca alloys produced significant grain refinement in ingots and obvious texture weakening effects in extruded bars.The ultimate compressive strength increased as the Sr content increased,while the ultimate tensile strength increased firstly and then declined with the increasing of Sr content.Electrochemical tests indicated the corrosion current density of the surface parallel to extrusion direction(ED)was much lower than that of the surface perpendicular to ED.In-vitro immersion tests demonstrated the increase in the pH of solution and weight loss of Mg-2Zn-0.5Ca-0.5Sr alloy remain the lowest during immersion tests.The best comprehensive property was obtained in Mg-2Zn-0.5Ca-0.5Sr alloy,which has the largest strength and the best corrosion resistance. 展开更多
关键词 Mg-Zn-Ca-Sr alloys EXTRUSION microstructure mechanical properties Corrosion properties
下载PDF
Effect of annealing treatment on the microstructure and mechanical properties of warm-rolled Mg-Zn-Gd-Ca-Mn alloys
14
作者 Yifan Song Xihai Li +5 位作者 Jinliang Xu Kai Zhang Yaozong Mao Hong Yan Huiping Li Rongshi Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2208-2220,共13页
The basal texture of traditional magnesium alloy AZ31 is easy to form and exhibits poor plasticity at room temperature.To address these problems,a multi-micro-alloyed high-plasticity Mg-1.8Zn-0.8Gd-0.1Ca-0.2Mn(wt%)all... The basal texture of traditional magnesium alloy AZ31 is easy to form and exhibits poor plasticity at room temperature.To address these problems,a multi-micro-alloyed high-plasticity Mg-1.8Zn-0.8Gd-0.1Ca-0.2Mn(wt%)alloy was developed using the unique role of rare earth and Ca solute atoms.In addition,the influence of the annealing process on the grain size,second phase,texture,and mechanical properties of the warm-rolled sheet at room temperature was analyzed with the goal of developing high-plasticity mag-nesium alloy sheets and obtaining optimal thermal-mechanical treatment parameters.The results show that the annealing temperature has a significant effect on the microstructure and properties due to the low alloying content:there are small amounts of larger-sized block and long string phases along the rolling direction(RD),as well as several spherical and rodlike particle phases inside the grains.With increas-ing annealing temperature,the grain size decreases and then increases,and the morphology,number,and size of the second phase also change correspondingly.The particle phase within the grains vanishes at 450℃,and the grain size increases sharply.In the full recrystal-lization stage at 300-350℃,the optimum strength-plasticity comprehensive mechanical properties are presented,with yield strengths of 182.1 and 176.9 MPa,tensile strengths of 271.1 and 275.8 MPa in the RD and transverse direction(TD),and elongation values of 27.4%and 32.3%,respectively.Moreover,there are still some larger-sized phases in the alloy that influence its mechanical properties,which offers room for improvement. 展开更多
关键词 Mg-Zn-Gd-Ca-Mn alloy annealing treatment microstructure TEXTURE dynamic recrystallization mechanical properties
下载PDF
Role of alloying and heat treatment on microstructure and mechanical properties of cast Al-Li alloys:A review
15
作者 Guo-hua Wu You-jie Guo +4 位作者 Fang-zhou Qi Shen Zhang Yi-xiao Wang Xin Tong Liang Zhang 《China Foundry》 SCIE EI CAS CSCD 2024年第5期445-460,共16页
Due to the prominent advantages of low density,high elastic modulus,high specific strength and specific stiffness,cast Al-Li alloys are suitable metallic materials for manufacturing complex large-sized components and ... Due to the prominent advantages of low density,high elastic modulus,high specific strength and specific stiffness,cast Al-Li alloys are suitable metallic materials for manufacturing complex large-sized components and are ideal structural materials for aerospace,defense and military industries.On the basis of the microstructural characteristics of cast Al-Li alloys,exploring the role of alloying and micro-alloying can stabilize their dominant position and further expand their application scope.In this review,the development progress of cast Al-Li alloys was summarized comprehensively.According to the latest research highlights,the influence of alloying and heat treatment on the microstructure and mechanical properties was systematically analyzed.The potential methods to improve the alloy performance were concluded.In response to the practical engineering requirements of cast Al-Li alloys,the scientific challenges and future research directions were discussed and prospected. 展开更多
关键词 cast Al-Li alloy alloyING microstructure mechanical properties heat treatment
下载PDF
Evolution of mechanical properties,localized corrosion resistance and microstructure of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging
16
作者 DAI Xuan-xuan LI Yu-zhang +2 位作者 LIU Sheng-dan YE Ling-ying BAO Chong-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1790-1807,共18页
The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,inte... The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,intergranular corrosion test,exfoliation corrosion test,slow strain rate tensile test and electrochemical test,and the mechanism has been discussed based on microstructure examination by optical microscopy,electron back scattered diffraction,scanning electron microscopy and scanning transmission electron microscopy.The NIA treatment includes a heating stage from 40℃to 180℃with a rate of 20℃/h and a cooling stage from 180℃to 40℃with a rate of 10℃/h.The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston(GPI)zones toη'phase.During the cooling stage,the sizes ofη'phase increase with a little change in the number density,leading to a further slight increase of the hardness and strength.As NIA proceeds,the corroded morphology in the alloy changes from a layering feature to a wavy feature,the maximum corrosion depth decreases,and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries. 展开更多
关键词 Al-Zn-Mg-Cu alloy non-isothermal aging mechanical properties localized corrosion resistance microstructure
下载PDF
Effect of annealing temperature on microstructure and mechanical properties of Mg-Zn-Zr-Nd alloy with large final rolling deformation
17
作者 ZHANG Jin-hai NIE Kai-bo +2 位作者 ZHANG Jin-hua DENG Kun-kun LIU Zhi-long 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1774-1789,共16页
In this study,the Mg-3Zn-0.5Zr-χNd(χ=0,0.6)alloys were subjected to final rolling treatment with large deformation of 50%.The impact of annealing temperatures on the microstructure and mechanical properties was inve... In this study,the Mg-3Zn-0.5Zr-χNd(χ=0,0.6)alloys were subjected to final rolling treatment with large deformation of 50%.The impact of annealing temperatures on the microstructure and mechanical properties was investigated.The rolled Mg-3Zn-0.5Zr-0.6Nd alloy exhibited an ultimate tensile strength of 386 MPa,a yield strength of 361 MPa,and an elongation of 7.1%.Annealing at different temperatures resulted in reduced strength and obviously increased elongation for both alloys.Optimal mechanical properties for the Mg-3Zn-0.5Zr-0.6Nd alloy were achieved after annealing at 200℃,with an ultimate tensile strength of 287 MPa,a yield strength of 235 MPa,and an elongation of 26.1%.The numerous deformed microstructures,twins,and precipitated phases in the rolled alloy could impede the deformation at room temperature and increase the work hardening rate.After annealing,a decrease in the work hardening effect and an increase in the dynamic recovery effect were obtained due to the formation of fine equiaxed grains,and the increased volume fraction of precipitated phases,which significantly improved the elongation of the alloy.Additionally,the addition of Nd element could enhance the annealing recrystallization rate,reduce the Schmid factor difference between basal and prismatic slip systems,facilitate multi-system slip initiation and improve the alloy plasticity. 展开更多
关键词 Mg-Zn-Zr-Nd alloy large final rolling deformation annealing temperatures microstructures mechanical properties
下载PDF
Effect of cold rolling deformation on microstructure evolution and mechanical properties of spray formed Al−Zn−Mg−Cu−Cr alloys
18
作者 Cai-he FAN Yi-hui LI +4 位作者 Qin WU Ling OU Ze-yi HU Yu-meng NI Jian-jun YANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2442-2454,共13页
The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0... The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0.13Cr(wt.%)alloy,was investigated.SEM,TEM,and EBSD were used to analyze the microstructures,and tensile tests were conducted to assess mechanical properties.The results indicate that the D1-T6 sample,subjected to 25%cold rolling deformation,exhibits finer grains(3.35μm)compared to the D0-T6 sample(grain size of 4.23μm)without cold rolling.Cold rolling refines the grains that grow in solution treatment.Due to the combined effects of finer and more dispersed precipitates,higher dislocation density and smaller grains,the yield strength and ultimate tensile strength of the D1-T6 sample can reach 663 and 737 MPa,respectively.In comparison to the as-extruded and D0-T6 samples,the yield strength of the D1-T6 sample increases by 415 and 92 MPa,respectively. 展开更多
关键词 Al−Zn−Mg−Cu alloy spray forming microstructure evolution mechanical properties strengthening mechanism
下载PDF
Chemical, microstructure, and mechanical property of TiAl alloys produced by high-power direct laser deposition 被引量:2
19
作者 Xinyu Zhang Chuanwei Li +3 位作者 Mengyao Zheng Xudong Yang Zhenhua Ye Jianfeng Gu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第22期99-108,共10页
Additive manufactured metals sometimes exhibit extraordinary microstructures and mechanical properties due to the particular processes. In this paper, we focus on a novel gradient TiAl alloys fabricated byhigh-power d... Additive manufactured metals sometimes exhibit extraordinary microstructures and mechanical properties due to the particular processes. In this paper, we focus on a novel gradient TiAl alloys fabricated byhigh-power direct laser deposition, whose chemical composition, microstructure, and mechanical property vary along the building direction. The results indicate that Al concentration dramatically decreasesfrom 39.5 at.% to 30.1 at.% as the height increases from the bottom to the top. Meanwhile, microstructural characterization indicates that the specimen appears basket-weave microstructure at the bottom,then the α_(2) and γ phase gradually decrease, and eventually it transforms into acicular martensite microstructure in the top region. The indentation analysis shows that the associated hardness increases asthe height increases, while the plasticity reaches a minimum value in the middle region. The increasingamount of β_(o)(ω) is considered to be responsible for the increasing hardness because of the strong precipitation strengthening effect. The high plasticity in the bottom and top regions results from the strongdeformation behaviors of the γ and β_(o) phases. 展开更多
关键词 Direct laser deposition tial alloys INHOMOGENEITY microstructure mechanical properties
原文传递
Effects of in-situZrB_2 nanoparticles and scandium on microstructure and mechanical property of 7N01 aluminum alloy
20
作者 Xizhou Kai Yuhui Wang +8 位作者 Ruikun Chen Yanjie Peng Anjun Shi Ran Tao Xiangfeng Liang Guirong Li Gang Chen Xiaojing Xu Yutao Zhao 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第3期612-620,I0007,共10页
In this study, the in-situ synthesized ZrB_(2) nanoparticles and rare earth Sc were introduced to enhance the strength and ductility of 7N01 aluminum alloy, via the generation of high-melting and uniform nanodispersoi... In this study, the in-situ synthesized ZrB_(2) nanoparticles and rare earth Sc were introduced to enhance the strength and ductility of 7N01 aluminum alloy, via the generation of high-melting and uniform nanodispersoids. The microstructure and mechanical property evolution of the prepared composites and the interaction between ZrB_(2) and Sc were studied in detail. The microstructure investigation shows that the introduction of rare earth scandium(Sc) can promote the distribution of ZrB_(2) nanoparticles, by improving their wettability to the Al melt. Meanwhile, the addition of rare earth Sc also modifies the coarse Al Zn Mg Mn Fe precipitated phases, refines the matrix grains and generates high-melting Al_3(Sc,Zr)/Al_3Sc nanodispersoids. Tensile tests of the composites show that with the combinatorial introduction of ZrB_(2) and Sc, the strength and ductility of the composites are improved simultaneously compared with the corresponding 7N01 alloy, ZrB_(2) /7N01 composite and Sc/7N01 alloy. And the optimum contents of ZrB_(2) and Sc are 3 wt% and 0.2 wt% in this study. The yield strength, ultimate strength and elongation of(3 wt% ZrB_(2) +0.2 wt% Sc)/7N01 composite are 477 MPa, 506 MPa and 9.8%, increased about 18.1%, 12.2%and 38% compared to 7N01 alloy. Furthermore, the cooperation strengthening mechanisms of ZrB_(2) and Sc are also discussed. 展开更多
关键词 7N01 aluminum alloy In-situ ZrB_(2)nanoparticles Rare earth Sc microstructure mechanical property Mechanism
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部