C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl com...C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase.展开更多
A γ-TiAl alloy with nominal composition of Ti-47%Al(molar fraction) was directionally solidified in an alumina mould with an Y2O3 protective coating.The effects of processing parameters(melting temperature and int...A γ-TiAl alloy with nominal composition of Ti-47%Al(molar fraction) was directionally solidified in an alumina mould with an Y2O3 protective coating.The effects of processing parameters(melting temperature and interaction time) on the metal-coating interface,microstructure and chemical composition of the alloy were evaluated.The result shows that the Y2O3 protective coating exhibits an effective barrier capability to avoid direct contact between the mould base material and the TiAl melt,although the Y2O3 coating is found to suffer some erosion and be slightly dissolved by the molten TiAl due to the coating-metal interactions.The directionally solidified alloys were contaminated with Y and O,and Y2O3 inclusions were dispersed in the metal matrix.The reason for this metal contamination is the Y2O3 coating dissolution by the TiAl melt.One mode of the interaction between Y2O3 and the TiAl melt is dissolution of yttrium and atomic oxygen in the melt by reaction Y2O3(s)=2Y(in TiAl melt)+3O(in TiAl melt).Both the extent of alloy contamination and the volume fractions of Y2O3 inclusions depend on the melting temperature and the interaction time.展开更多
基金Projects(51201134,51271147)supported by the National Natural Science Foundation of ChinaProject(2015JM5181)supported by the Natural Science Foundation of Shaanxi Province,China+1 种基金Project(115-QP-2014)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),ChinaProject(3102014JCQ01023)supported by the Fundamental Research Funds for the Central Universities,China
文摘C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase.
文摘A γ-TiAl alloy with nominal composition of Ti-47%Al(molar fraction) was directionally solidified in an alumina mould with an Y2O3 protective coating.The effects of processing parameters(melting temperature and interaction time) on the metal-coating interface,microstructure and chemical composition of the alloy were evaluated.The result shows that the Y2O3 protective coating exhibits an effective barrier capability to avoid direct contact between the mould base material and the TiAl melt,although the Y2O3 coating is found to suffer some erosion and be slightly dissolved by the molten TiAl due to the coating-metal interactions.The directionally solidified alloys were contaminated with Y and O,and Y2O3 inclusions were dispersed in the metal matrix.The reason for this metal contamination is the Y2O3 coating dissolution by the TiAl melt.One mode of the interaction between Y2O3 and the TiAl melt is dissolution of yttrium and atomic oxygen in the melt by reaction Y2O3(s)=2Y(in TiAl melt)+3O(in TiAl melt).Both the extent of alloy contamination and the volume fractions of Y2O3 inclusions depend on the melting temperature and the interaction time.