The effect of a sputtered Ti-48AI-8Cr-2Ag (at. pct) coating on the oxidation resistance of the cast Ti-46.5AI-5Nb (at. pct) alloy was investigated in air at 1000-1100℃. Hot corrosion in molten 75 wt pct Na2SO4+25 wt ...The effect of a sputtered Ti-48AI-8Cr-2Ag (at. pct) coating on the oxidation resistance of the cast Ti-46.5AI-5Nb (at. pct) alloy was investigated in air at 1000-1100℃. Hot corrosion in molten 75 wt pct Na2SO4+25 wt pct K2SO4 was investigated at 900℃. The scale on the cast TiAINb tends to spall in air, while the scale on coating is very adherent. The sputtered Ti-48AI-8Cr-2Ag coating remarkably improved high temperature oxidation resistance of the cast Ti-46.5AI-5Nb alloy because of the formation of an adherent Al2O3 scale. Due to the inward diffusion of Cr, Kirkendall voids were found at the coating/substrate interface. TiAICrAg coating provided excellent hot corrosion resistance for TiAINb alloy in molten 75 wt pct Na2SO4+25 wt pct K2S04 at 900℃ due to the formation of a continuous Al_2O_3 scale.展开更多
The present paper deals with the investigation of microstructure and high-temperature hot corrosion behavior of high-velocity oxy fuel(HVOF)-produced coatings. Two powder coating compositions, namely, Ni22Cr10Al1Y all...The present paper deals with the investigation of microstructure and high-temperature hot corrosion behavior of high-velocity oxy fuel(HVOF)-produced coatings. Two powder coating compositions, namely, Ni22Cr10Al1Y alloy powder and Ni22Cr10Al1Y(80 wt%;microsized)–silicon carbide(SiC)(20 wt%;nano(N)) powder, were deposited on a T-22 boiler tube steel. The hot corrosion behavior of bare and coated steels was tested at 900°C for 50 cycles in Na2SO4–60 wt%V2O5 molten-salt environment. The kinetics of corrosion was established with weight change measurements after each cycle. The microporosity and microhardness of the as-coated samples have been reported. The X-ray diffraction,field emission-scanning electron microscopy/energy dispersive spectroscopy, and X-ray mapping characterization techniques have been utilized for structural analysis of the as-coated and hot-corroded samples. The results showed that both coatings were deposited with a porosity less than2%. Both coated samples revealed the development of harder surfaces than the substrate. During hot corrosion testing, the bare T22 steel showed an accelerated corrosion in comparison with its coated counterparts. The HVOF-sprayed coatings were befitted effectively by maintaining their adherence during testing. The Ni22Cr10Al1Y–20 wt%SiC(N) composite coating was more effective than the Ni–22Cr–10Al–1Y coating against corrosion in the high-temperature fluxing process.展开更多
Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples...Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples were built with the relativity density reaching 99.9%.High temperature oxidation was performed on the L-PBF samples in circulating air via various heating temperatures and holding durations.The oxidation and diffusion at the elevated temperature generated a gradient structure composed of an oxide layer at the surface,a transition layer in the middle and the matrix.The oxide layer consisted of rare earth(RE)oxides,and became dense and thick with increasing the holding duration.The matrix was composed ofα-Mg,RE oxides and Mg_(24)RE_(5) precipitates.The precipitates almost disappeared in the transition layer.Enhanced passivation effect was observed in the samples treated by a suitable high temperature oxidation.The original L-PBF samples lost 40%weight after 3-day immersion in Hank’s solution,and broke into fragments after 7-day immersion.The casted and solution treated samples lost roughly half of the weight after 28-day immersion.The high temperature oxidation samples,which were heated at 525℃ for 8 h,kept the structural integrity,and lost only 6.88%weight after 28-day immersion.The substantially improved corrosion resistance was contributed to the gradient structure at the surface.On one hand,the outmost dense layer of RE oxides isolated the corrosive medium;on the other hand,the transition layer considerably inhibited the corrosion owing to the lack of precipitates.Overall,high temperature oxidation provides an efficient,economic and safe approach to inhibit the corrosion of WE43 L-PBF samples,and has promising prospects for future clinical applications.展开更多
In order to improve the high temperature oxidation resistance of TiAl alloy, Y modified silicide coatings were prepared by pack cementation process at 1030, 1080 and 1130 °C, respectively, for 5 h. The microstruc...In order to improve the high temperature oxidation resistance of TiAl alloy, Y modified silicide coatings were prepared by pack cementation process at 1030, 1080 and 1130 °C, respectively, for 5 h. The microstructures, phase constitutions and oxidation behavior of these coatings were studied. The results show that the coating prepared by co-depositing Si?Y at 1080 °C for 5 h has a multiple layer structure: a superficial zone consisting of Al-rich (Ti,Nb)5Si4 and (Ti,Nb)5Si3, an out layer consisting of (Ti,Nb)Si2, a middle layer consisting of (Ti,Nb)5Si4 and (Ti,Nb)5Si3, and aγ-TiAl inner layer. Co-deposition temperature imposes strong influences on the coating structure. The coating prepared by Si?Y co-depositing at 1080 °C for 5 h shows relatively good oxidation resistance at 1000 °C in air, and the oxidation rate constant of the coating is about two orders of magnitude lower than that of the bare TiAl alloy.展开更多
Oxidation characteristics of Alloy 617 and Haynes 230 at 900 oC in simulated helium environment,hot steam environment containing H2 as well as in air and pure helium conditions were investigated.Compared to air condit...Oxidation characteristics of Alloy 617 and Haynes 230 at 900 oC in simulated helium environment,hot steam environment containing H2 as well as in air and pure helium conditions were investigated.Compared to air condition,the oxidation rate of Alloy 617 was not significantly affected in helium and hot steam environments,while Haynes 230 showed lower oxidation rate in helium environment.On the other hand,the oxide morphology and structure of Alloy 617 were strongly affected by the environments,but those of Haynes 230 were less dependent on the environments.For Haynes 230,a Cr2O3 inner layer and a protective MnCr2O4 outer layer were formed in all environments,which contributed to the better oxidation resistance.As the mechanical properties,such as creep and tensile properties,were significantly affected by the oxidation behaviors,surface treatment methods to enhance oxidation resistance of these alloys should be developed.展开更多
Corrosion behaviors of pure Ni and three NiCr alloys were investigated in an HCl-containing oxidizing atmosphere at 700 ℃ and 800 ℃. All materials suffer from accelerated corrosion at both temperatures. NiCr alloys ...Corrosion behaviors of pure Ni and three NiCr alloys were investigated in an HCl-containing oxidizing atmosphere at 700 ℃ and 800 ℃. All materials suffer from accelerated corrosion at both temperatures. NiCr alloys show an initial mass loss due to the formation of volatile CrCl3 and CrO2Cl2. Some chlorides are detected at the scale/substrate interface and many voids are also found there. NiCr alloys with higher chromium content have better corrosion resistance. However, Ni50Cr is inferior to Ni25Cr due to its two-phase structure, which makes it easy for chlorine to diffuse along grain boundary and to occur inner oxidation. The relevant corrosion mechanism was also discussed.展开更多
FeAl intermetallic compound with different contents of rare earth oxide La2O3 addition was prepared by hot pressing the mechanically alloyed powders.Effect of La2O3 on microstructure and high-temperature wear property...FeAl intermetallic compound with different contents of rare earth oxide La2O3 addition was prepared by hot pressing the mechanically alloyed powders.Effect of La2O3 on microstructure and high-temperature wear property of the sintered FeAl samples was investigated in this paper.The results showed that 1 wt.% La2O3 addition could refine the microstructure and increase the density of the FeAl intermetallic compound,and correspondingly improved the high-temperature wear resistance.SEM and EDS analyses of the wo...展开更多
The oxidation behavior of the Ti-47.5Al-2.5V-1.0Cr-0.2Zr alloy at 900℃ was investigated at different oxidation times(5,20,60 and 100 h).The results show that the total weight gain of the alloy after 100 h at 900℃ ox...The oxidation behavior of the Ti-47.5Al-2.5V-1.0Cr-0.2Zr alloy at 900℃ was investigated at different oxidation times(5,20,60 and 100 h).The results show that the total weight gain of the alloy after 100 h at 900℃ oxidation is 9.1 g·m^(-2),and the oxidation rate decreases with oxidation time.The oxides on the alloy surface are mainly TiO_(2) and Al_(2)O_(3).At the beginning of oxidation(5 h),the oxide film is relatively complete,thin,and the interface between the oxide layer and the matrix is virtually flat.At the end of oxidation(100 h),the thickness of the oxide film is expanded,cracking and spalling occur,and the spalling form is intra-film spalling.At the same time,oxygen is mainly distributed in the oxide film and the oxygen content in the alloy substrate is reduced,confirming that the TiAl alloy has a certain oxidation stability at 900℃.From the outer surface of the oxide layer to the matrix,the TiO_(2) content increases and the Al_(2)O_(3) content decreases.Oxidation proceeds to completion in this system via the dissolution and diffusion of O atom.展开更多
Aluminum coatings were sprayed on the substrate of steel Q235 by arc spraying. The test samples of Q235, Al coatings and Al coatings with seal coat were placed in box type electric resistance furnace at 400, 500,600, ...Aluminum coatings were sprayed on the substrate of steel Q235 by arc spraying. The test samples of Q235, Al coatings and Al coatings with seal coat were placed in box type electric resistance furnace at 400, 500,600, 650 ℃ when their oxidation behaviors were studied. And their oxidation kinetics curves were protracted. Microstructure, microhardness, bond strength and distribution of section elements were investigated by optical microscope(OM), Vickers microhardness instrument, electric tensile test machine and EPMA. Al coatings and Al coatings with seal coat can enhance the oxidation-resistance of substrate under 500 ℃. The latter has the best corrosion resistance. The coatings can't protect the substrate against oxidation above 600 ℃. After a long time corrosion there is enriched oxygen element at interface.展开更多
The corrosion behavior of TP304H steel with combined treatment of shot blasting and electrophoresis deposited RE coating in l%SO2+14%O2+85%Ar mixture gaseous has been studied at 923K for 150 hours. The results show th...The corrosion behavior of TP304H steel with combined treatment of shot blasting and electrophoresis deposited RE coating in l%SO2+14%O2+85%Ar mixture gaseous has been studied at 923K for 150 hours. The results show that both RE coating and shot blasting can improve the corrosion resistance of TP304H steel, and combined treatment has the best effect. Combined treatment reduces 50% mass gain, enhances the continuous and compactness of scale and changes the scale phase forms from FeaOs/Fe^S/Ni^/S to Cr2O3/FeCr2S4/Ni3_xS2. The synergistic effects of combined treatment on corrosion resistance and the effect of shot blasting on corrosion kinetics are discussed. Shot blasting increases the outward diffusion and surface concentration of Cr, Ce coating promotes the selective oxidation of Cr.展开更多
ZnCl2 is one of the dominant aggressive species in waste incinerators or other advanced combustion power generation systems. In this study, the influence of minor amount of gaseous ZnCl2 on the corrosion behavior of p...ZnCl2 is one of the dominant aggressive species in waste incinerators or other advanced combustion power generation systems. In this study, the influence of minor amount of gaseous ZnCl2 on the corrosion behavior of pure iron was examined at 600-800℃ in a pure oxygen environment. The corrosion rate usually increased markedly with increasing temperatures at a fixed ZnCl2 content or with increased ZnCl2 contents at a constant temperature. The corrosion products were composed of a thin outer layer of ZnFe2O4 spinel and an inner zone with a much thicker layer of Fe2O3, which exhibited a serious separation from the matrix. Moreover, a molten FeCl2 layer was observed at the scale substrate interface. The accelerated corrosion of pure iron was attributed to the existence of FeCl2 with low melting point on the metal surface, which destroyed the cohesion and adhesion of the oxide scale. The results are discussed in relation to the thermodynamic factors and the presence of volatile compounds in the reaction system.展开更多
Porous TiAl intermetallic compound, as a novel substitute for current inorganic porous material, offsets the shortages of both ceramics and metals. The environmental corrosion resistance of porous TiAl intermetallic c...Porous TiAl intermetallic compound, as a novel substitute for current inorganic porous material, offsets the shortages of both ceramics and metals. The environmental corrosion resistance of porous TiAl intermetallic compound was investigated. The kinetic equation for the cyclic oxidation of porous TiAl alloy at 600 ℃ is determined to be △m2=1.08×10-5t. After total oxidation of 140 h, porous TiAl intermetallic compound shows more stability of pore structure and the mass gain of TiAl alloy is 0.042 g/m2, which is only 10.6% that of porous 316L stainless steel. The kinetic equation for the cyclic corrosion behavior of porous TiAl alloy in hydrochloric acid with pH=2 at 90 ℃ is determined to be △m2=5.41×10-5t-2.08×10-4. After 50 h exposure, the mass loss of TiAl alloy is 0.049 g/m2, which is only 14.8% and 5.57% that of porous Ti and stainless steel, respectively. The kinetic equation in hydrochloric acid with pH=3 is determined to be △m2=2.63×10-6t-3.72×10-6.展开更多
To improve the oxidation resistance and corrosion resistance of Zr-4 alloy, titanium nitride (TIN) coatings were prepared on the Zr-4 alloy with a TiN ceramic target with different ratios of N2. Microstructure and h...To improve the oxidation resistance and corrosion resistance of Zr-4 alloy, titanium nitride (TIN) coatings were prepared on the Zr-4 alloy with a TiN ceramic target with different ratios of N2. Microstructure and high-temperature properties of the TiN coated samples were studied by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction meter (XRD), X-ray photoelectron spectroscopy (XPS), heat treatment furnace and autoclaves, respectively. The x value of the TiN coatings (TiN) ranges from 0.96 to 1.33. After the introduction of N2, TiN coating exhibits a weak (200) plane and a preferred (111) orientation. The coating prepared with an N2 flow ratio of 15% shows an optimal oxidation resistance in the atmospheric environment at 800 ℃. In either 1 200 ℃ steam environment for one hour, or deionized water at 360 ℃ and a pressure of 18.6 Mpa for 16 d, the opitimized TiN coated samples have no delamination or spallation; and the gains in the masses of samples are much smaller than Zr-4 alloy. These results demonstrate the effectiveness of the optimized TiN coating as the protective coating on the Zr-4 alloy under extreme conditons.展开更多
The effect of NiCoCrAlY overlay coatings on the oxidation resistance of γ-TiAl was studied at 900 ℃ in static air. To hinder the interdiffusion of the elements, the Al/Al2O3 layer was added between the coating and t...The effect of NiCoCrAlY overlay coatings on the oxidation resistance of γ-TiAl was studied at 900 ℃ in static air. To hinder the interdiffusion of the elements, the Al/Al2O3 layer was added between the coating and the alloy. The results show that the TiAl alloy exhibits poor oxidation resistance. NiCoCrAlY coating can not effectively protect the γ-TiAl substrate from high temperature oxidation because of the serious interdiffusion between the coating and the substrates. With Al/Al2O3 diffusion barrier, the NiCoCrAlY coating exhibits excellent oxidation protection on γ-TiAl alloy.展开更多
为改善镁合表面高温氧化膜性能,采用CO_(2)矿化技术对AZ80-0.38Nd(质量分数/%,下同)合金表面高温氧化膜进行了处理。对比考察了合金氧化膜CO_(2)矿化处理前后的微观形貌、结构及物相,并采用浸泡和电化学测试技术研究了膜层的腐蚀防护性...为改善镁合表面高温氧化膜性能,采用CO_(2)矿化技术对AZ80-0.38Nd(质量分数/%,下同)合金表面高温氧化膜进行了处理。对比考察了合金氧化膜CO_(2)矿化处理前后的微观形貌、结构及物相,并采用浸泡和电化学测试技术研究了膜层的腐蚀防护性能。结果表明,AZ80-0.38Nd合金表面高温氧化膜具有典型的裂纹与孔洞缺陷,CO_(2)矿化处理很好地修复了合金表面高温氧化膜缺陷,提高了氧化膜层的致密度,并在合金表面构筑由棒状MgCO_(3)·3H_(2)O和层片状4MgCO_(3)·Mg(OH)2·4H 2O组成的矿化膜。相比于氧化膜,矿化膜可将合金自腐蚀电位(E corr)由-1.41 V SCE提高至-1.33 V SCE,将合金自腐蚀电流密度(i corr)由1.62×10^(-4)A/cm^(2)减小至2.47×10^(-5)A/cm^(2)。此外,矿化膜还能将合金局部腐蚀转变为均匀腐蚀,呈现优异的腐蚀防护性能。展开更多
文摘The effect of a sputtered Ti-48AI-8Cr-2Ag (at. pct) coating on the oxidation resistance of the cast Ti-46.5AI-5Nb (at. pct) alloy was investigated in air at 1000-1100℃. Hot corrosion in molten 75 wt pct Na2SO4+25 wt pct K2SO4 was investigated at 900℃. The scale on the cast TiAINb tends to spall in air, while the scale on coating is very adherent. The sputtered Ti-48AI-8Cr-2Ag coating remarkably improved high temperature oxidation resistance of the cast Ti-46.5AI-5Nb alloy because of the formation of an adherent Al2O3 scale. Due to the inward diffusion of Cr, Kirkendall voids were found at the coating/substrate interface. TiAICrAg coating provided excellent hot corrosion resistance for TiAINb alloy in molten 75 wt pct Na2SO4+25 wt pct K2S04 at 900℃ due to the formation of a continuous Al_2O_3 scale.
基金DST,New Delhi for their research grant(No.SB/FTP/ETA-435/2012,Dated-10/6/2013)that funded the research and development of the project entitled“Nano-composite Coatings to Control Erosion of Boiler Tubes of Steam Generating Plants.”
文摘The present paper deals with the investigation of microstructure and high-temperature hot corrosion behavior of high-velocity oxy fuel(HVOF)-produced coatings. Two powder coating compositions, namely, Ni22Cr10Al1Y alloy powder and Ni22Cr10Al1Y(80 wt%;microsized)–silicon carbide(SiC)(20 wt%;nano(N)) powder, were deposited on a T-22 boiler tube steel. The hot corrosion behavior of bare and coated steels was tested at 900°C for 50 cycles in Na2SO4–60 wt%V2O5 molten-salt environment. The kinetics of corrosion was established with weight change measurements after each cycle. The microporosity and microhardness of the as-coated samples have been reported. The X-ray diffraction,field emission-scanning electron microscopy/energy dispersive spectroscopy, and X-ray mapping characterization techniques have been utilized for structural analysis of the as-coated and hot-corroded samples. The results showed that both coatings were deposited with a porosity less than2%. Both coated samples revealed the development of harder surfaces than the substrate. During hot corrosion testing, the bare T22 steel showed an accelerated corrosion in comparison with its coated counterparts. The HVOF-sprayed coatings were befitted effectively by maintaining their adherence during testing. The Ni22Cr10Al1Y–20 wt%SiC(N) composite coating was more effective than the Ni–22Cr–10Al–1Y coating against corrosion in the high-temperature fluxing process.
基金funded by the National Key Research and Development Program of China (2018YFE0104200)National Natural Science Foundation of China (51875310, 52175274, 82172065)Tsinghua Precision Medicine Foundation
文摘Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples were built with the relativity density reaching 99.9%.High temperature oxidation was performed on the L-PBF samples in circulating air via various heating temperatures and holding durations.The oxidation and diffusion at the elevated temperature generated a gradient structure composed of an oxide layer at the surface,a transition layer in the middle and the matrix.The oxide layer consisted of rare earth(RE)oxides,and became dense and thick with increasing the holding duration.The matrix was composed ofα-Mg,RE oxides and Mg_(24)RE_(5) precipitates.The precipitates almost disappeared in the transition layer.Enhanced passivation effect was observed in the samples treated by a suitable high temperature oxidation.The original L-PBF samples lost 40%weight after 3-day immersion in Hank’s solution,and broke into fragments after 7-day immersion.The casted and solution treated samples lost roughly half of the weight after 28-day immersion.The high temperature oxidation samples,which were heated at 525℃ for 8 h,kept the structural integrity,and lost only 6.88%weight after 28-day immersion.The substantially improved corrosion resistance was contributed to the gradient structure at the surface.On one hand,the outmost dense layer of RE oxides isolated the corrosive medium;on the other hand,the transition layer considerably inhibited the corrosion owing to the lack of precipitates.Overall,high temperature oxidation provides an efficient,economic and safe approach to inhibit the corrosion of WE43 L-PBF samples,and has promising prospects for future clinical applications.
基金Project(2014JZ012)supported by the Natural Science Program for Basic Research in Key Areas of Shaanxi Province,China
文摘In order to improve the high temperature oxidation resistance of TiAl alloy, Y modified silicide coatings were prepared by pack cementation process at 1030, 1080 and 1130 °C, respectively, for 5 h. The microstructures, phase constitutions and oxidation behavior of these coatings were studied. The results show that the coating prepared by co-depositing Si?Y at 1080 °C for 5 h has a multiple layer structure: a superficial zone consisting of Al-rich (Ti,Nb)5Si4 and (Ti,Nb)5Si3, an out layer consisting of (Ti,Nb)Si2, a middle layer consisting of (Ti,Nb)5Si4 and (Ti,Nb)5Si3, and aγ-TiAl inner layer. Co-deposition temperature imposes strong influences on the coating structure. The coating prepared by Si?Y co-depositing at 1080 °C for 5 h shows relatively good oxidation resistance at 1000 °C in air, and the oxidation rate constant of the coating is about two orders of magnitude lower than that of the bare TiAl alloy.
基金supported by the MEST/NRF (Nuclear R&D Program,2005-2004718 and 2009 0083392) of Korea
文摘Oxidation characteristics of Alloy 617 and Haynes 230 at 900 oC in simulated helium environment,hot steam environment containing H2 as well as in air and pure helium conditions were investigated.Compared to air condition,the oxidation rate of Alloy 617 was not significantly affected in helium and hot steam environments,while Haynes 230 showed lower oxidation rate in helium environment.On the other hand,the oxide morphology and structure of Alloy 617 were strongly affected by the environments,but those of Haynes 230 were less dependent on the environments.For Haynes 230,a Cr2O3 inner layer and a protective MnCr2O4 outer layer were formed in all environments,which contributed to the better oxidation resistance.As the mechanical properties,such as creep and tensile properties,were significantly affected by the oxidation behaviors,surface treatment methods to enhance oxidation resistance of these alloys should be developed.
文摘Corrosion behaviors of pure Ni and three NiCr alloys were investigated in an HCl-containing oxidizing atmosphere at 700 ℃ and 800 ℃. All materials suffer from accelerated corrosion at both temperatures. NiCr alloys show an initial mass loss due to the formation of volatile CrCl3 and CrO2Cl2. Some chlorides are detected at the scale/substrate interface and many voids are also found there. NiCr alloys with higher chromium content have better corrosion resistance. However, Ni50Cr is inferior to Ni25Cr due to its two-phase structure, which makes it easy for chlorine to diffuse along grain boundary and to occur inner oxidation. The relevant corrosion mechanism was also discussed.
基金supported by the National Natural Science Foundation of China (50575034)
文摘FeAl intermetallic compound with different contents of rare earth oxide La2O3 addition was prepared by hot pressing the mechanically alloyed powders.Effect of La2O3 on microstructure and high-temperature wear property of the sintered FeAl samples was investigated in this paper.The results showed that 1 wt.% La2O3 addition could refine the microstructure and increase the density of the FeAl intermetallic compound,and correspondingly improved the high-temperature wear resistance.SEM and EDS analyses of the wo...
基金financially supported by the National Natural Science Foundation of China (51805335)
文摘The oxidation behavior of the Ti-47.5Al-2.5V-1.0Cr-0.2Zr alloy at 900℃ was investigated at different oxidation times(5,20,60 and 100 h).The results show that the total weight gain of the alloy after 100 h at 900℃ oxidation is 9.1 g·m^(-2),and the oxidation rate decreases with oxidation time.The oxides on the alloy surface are mainly TiO_(2) and Al_(2)O_(3).At the beginning of oxidation(5 h),the oxide film is relatively complete,thin,and the interface between the oxide layer and the matrix is virtually flat.At the end of oxidation(100 h),the thickness of the oxide film is expanded,cracking and spalling occur,and the spalling form is intra-film spalling.At the same time,oxygen is mainly distributed in the oxide film and the oxygen content in the alloy substrate is reduced,confirming that the TiAl alloy has a certain oxidation stability at 900℃.From the outer surface of the oxide layer to the matrix,the TiO_(2) content increases and the Al_(2)O_(3) content decreases.Oxidation proceeds to completion in this system via the dissolution and diffusion of O atom.
文摘Aluminum coatings were sprayed on the substrate of steel Q235 by arc spraying. The test samples of Q235, Al coatings and Al coatings with seal coat were placed in box type electric resistance furnace at 400, 500,600, 650 ℃ when their oxidation behaviors were studied. And their oxidation kinetics curves were protracted. Microstructure, microhardness, bond strength and distribution of section elements were investigated by optical microscope(OM), Vickers microhardness instrument, electric tensile test machine and EPMA. Al coatings and Al coatings with seal coat can enhance the oxidation-resistance of substrate under 500 ℃. The latter has the best corrosion resistance. The coatings can't protect the substrate against oxidation above 600 ℃. After a long time corrosion there is enriched oxygen element at interface.
文摘The corrosion behavior of TP304H steel with combined treatment of shot blasting and electrophoresis deposited RE coating in l%SO2+14%O2+85%Ar mixture gaseous has been studied at 923K for 150 hours. The results show that both RE coating and shot blasting can improve the corrosion resistance of TP304H steel, and combined treatment has the best effect. Combined treatment reduces 50% mass gain, enhances the continuous and compactness of scale and changes the scale phase forms from FeaOs/Fe^S/Ni^/S to Cr2O3/FeCr2S4/Ni3_xS2. The synergistic effects of combined treatment on corrosion resistance and the effect of shot blasting on corrosion kinetics are discussed. Shot blasting increases the outward diffusion and surface concentration of Cr, Ce coating promotes the selective oxidation of Cr.
文摘ZnCl2 is one of the dominant aggressive species in waste incinerators or other advanced combustion power generation systems. In this study, the influence of minor amount of gaseous ZnCl2 on the corrosion behavior of pure iron was examined at 600-800℃ in a pure oxygen environment. The corrosion rate usually increased markedly with increasing temperatures at a fixed ZnCl2 content or with increased ZnCl2 contents at a constant temperature. The corrosion products were composed of a thin outer layer of ZnFe2O4 spinel and an inner zone with a much thicker layer of Fe2O3, which exhibited a serious separation from the matrix. Moreover, a molten FeCl2 layer was observed at the scale substrate interface. The accelerated corrosion of pure iron was attributed to the existence of FeCl2 with low melting point on the metal surface, which destroyed the cohesion and adhesion of the oxide scale. The results are discussed in relation to the thermodynamic factors and the presence of volatile compounds in the reaction system.
基金Projects(20636020, 20476106 and 50825102) supported by the National Natural Science Foundation of ChinaProject(2003CB615707) supported by the National Basic Research Program of China+1 种基金Project(2006AA03Z511) supported by the Hi-tech Research and Development Program of ChinaProject(50721003) supported by the Creative Research Group of National Natural Science Foundation of China
文摘Porous TiAl intermetallic compound, as a novel substitute for current inorganic porous material, offsets the shortages of both ceramics and metals. The environmental corrosion resistance of porous TiAl intermetallic compound was investigated. The kinetic equation for the cyclic oxidation of porous TiAl alloy at 600 ℃ is determined to be △m2=1.08×10-5t. After total oxidation of 140 h, porous TiAl intermetallic compound shows more stability of pore structure and the mass gain of TiAl alloy is 0.042 g/m2, which is only 10.6% that of porous 316L stainless steel. The kinetic equation for the cyclic corrosion behavior of porous TiAl alloy in hydrochloric acid with pH=2 at 90 ℃ is determined to be △m2=5.41×10-5t-2.08×10-4. After 50 h exposure, the mass loss of TiAl alloy is 0.049 g/m2, which is only 14.8% and 5.57% that of porous Ti and stainless steel, respectively. The kinetic equation in hydrochloric acid with pH=3 is determined to be △m2=2.63×10-6t-3.72×10-6.
基金Funded by the National Science and Technology Major Project of the Ministry of Science and Technology of China(2015ZX06004001-002)the Postgraduate Research and Innovation Project of the University of South China(2017XCX11)
文摘To improve the oxidation resistance and corrosion resistance of Zr-4 alloy, titanium nitride (TIN) coatings were prepared on the Zr-4 alloy with a TiN ceramic target with different ratios of N2. Microstructure and high-temperature properties of the TiN coated samples were studied by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction meter (XRD), X-ray photoelectron spectroscopy (XPS), heat treatment furnace and autoclaves, respectively. The x value of the TiN coatings (TiN) ranges from 0.96 to 1.33. After the introduction of N2, TiN coating exhibits a weak (200) plane and a preferred (111) orientation. The coating prepared with an N2 flow ratio of 15% shows an optimal oxidation resistance in the atmospheric environment at 800 ℃. In either 1 200 ℃ steam environment for one hour, or deionized water at 360 ℃ and a pressure of 18.6 Mpa for 16 d, the opitimized TiN coated samples have no delamination or spallation; and the gains in the masses of samples are much smaller than Zr-4 alloy. These results demonstrate the effectiveness of the optimized TiN coating as the protective coating on the Zr-4 alloy under extreme conditons.
基金Project(KGCX2 212 02) supported by the Directional Items of Chinese Academy of Sciences
文摘The effect of NiCoCrAlY overlay coatings on the oxidation resistance of γ-TiAl was studied at 900 ℃ in static air. To hinder the interdiffusion of the elements, the Al/Al2O3 layer was added between the coating and the alloy. The results show that the TiAl alloy exhibits poor oxidation resistance. NiCoCrAlY coating can not effectively protect the γ-TiAl substrate from high temperature oxidation because of the serious interdiffusion between the coating and the substrates. With Al/Al2O3 diffusion barrier, the NiCoCrAlY coating exhibits excellent oxidation protection on γ-TiAl alloy.
文摘为改善镁合表面高温氧化膜性能,采用CO_(2)矿化技术对AZ80-0.38Nd(质量分数/%,下同)合金表面高温氧化膜进行了处理。对比考察了合金氧化膜CO_(2)矿化处理前后的微观形貌、结构及物相,并采用浸泡和电化学测试技术研究了膜层的腐蚀防护性能。结果表明,AZ80-0.38Nd合金表面高温氧化膜具有典型的裂纹与孔洞缺陷,CO_(2)矿化处理很好地修复了合金表面高温氧化膜缺陷,提高了氧化膜层的致密度,并在合金表面构筑由棒状MgCO_(3)·3H_(2)O和层片状4MgCO_(3)·Mg(OH)2·4H 2O组成的矿化膜。相比于氧化膜,矿化膜可将合金自腐蚀电位(E corr)由-1.41 V SCE提高至-1.33 V SCE,将合金自腐蚀电流密度(i corr)由1.62×10^(-4)A/cm^(2)减小至2.47×10^(-5)A/cm^(2)。此外,矿化膜还能将合金局部腐蚀转变为均匀腐蚀,呈现优异的腐蚀防护性能。