Zn-Al-Cu-TiB2(ZA27-TiB2) in situ composites were fabricated via reactions between molten aluminum and mixed halide salts(K2TiF6 and KBF4) at temperature of 875 °C. The microstructure, mechanical properties an...Zn-Al-Cu-TiB2(ZA27-TiB2) in situ composites were fabricated via reactions between molten aluminum and mixed halide salts(K2TiF6 and KBF4) at temperature of 875 °C. The microstructure, mechanical properties and wear behavior of the composites were investigated. Microstructure analysis shows that fine and clean TiB2 particles distribute uniformly through the matrix. The mechanical properties of the composites increase with the increase in TiB2 content. As TiB2 content increases to 5%(mass fraction), an improvement of HB 18 in hardness and 49 MPa in ultimate tensile strength(UTS) is achieved. The overall results reveal that the composites possess low friction coefficients and the wear rate is reduced from 5.9×10-3 to 1.3×10-3 mm3/m after incorporating 5% TiB2. Friction coefficient and worn surface analysis indicate that there is a change in the wear mechanism in the initial stage of wear test after introducing in situ TiB2 particles into the matrix.展开更多
TiC-TiB2-Cu composites were produced by self-propagating high-temperature synthesis combined with pseudo hot isostatic pressing using Ti, B4C and Cu powders. The microstructure and mechanical properties of the composi...TiC-TiB2-Cu composites were produced by self-propagating high-temperature synthesis combined with pseudo hot isostatic pressing using Ti, B4C and Cu powders. The microstructure and mechanical properties of the composites were investigated. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that the final products were only TiC, TiB2 and Cu phases. The clubbed TiB2 grains and spheroidal or irregular TiC grains were found in the microstructure of synthesized products. The reaction temperature and grain size of TiB2 and TiC particles decreased with increasing Cu content. The introduction of Cu into the composites resulted in a drastic increase in the relative density and flexual strength, and the maximum values were obtained with the addition of 20 wt pct, while the fracture toughness was the best when Cu content was 40 wt pct.展开更多
In-situ TiB2 particles reinforced 2014 aluminum alloy composite was prepared using an exothermic reaction process with K2TiF6 and KBF4 salts. The effects of CeO2 additive on the microstructure and properties of in-sit...In-situ TiB2 particles reinforced 2014 aluminum alloy composite was prepared using an exothermic reaction process with K2TiF6 and KBF4 salts. The effects of CeO2 additive on the microstructure and properties of in-situ TiB2/2014 composite were investigated. The results showed that CeO2 at high temperature exhibits the same function as Ce. When 0.5% (mass fraction) CeO2 additive was added, the dispersion of TiB2 particles in the matrix is improved significantly, and particles have no obvious settlement. The dispersing mechanism of TiB2 particles in 2014 Al alloy matrix was explained. Compared with the composite without CeO2, the hardness, tensile strength, yield strength and elongation of the composite with CeO2 addition are greatly increased in as-cast condition.展开更多
In electrolyte melts containing K at low temperature, the penetrative and migratory path of alkali metals (K and Na) in pitch, furan, phenolic aldehyde and epoxy based TiB2-C composite cathodes during the electrolys...In electrolyte melts containing K at low temperature, the penetrative and migratory path of alkali metals (K and Na) in pitch, furan, phenolic aldehyde and epoxy based TiB2-C composite cathodes during the electrolysis process were studied by EDS and self-made modified Rapoport apparatus. The electrolysis expansion rates, the diffusion coefficients of the alkali metals and the corrosion rates of the composite cathode were also calculated and discussed. The results show that no matter what kind of binder is used, alkali metals have the same penetrative path in composite cathodes:firstly in pore, then in binder and finally in carbonaceous aggregates. K and Na penetrate into both binder and carbonaceous aggregates, which leads to the expansion of composite cathodes, and K has stronger penetration ability than Na. Electrolysis expansion rate of resin based composite cathode is smaller than that of pitch based composite cathodes, and so do the diffusion coefficient and corrosion rate. Resin based composite cathode has better resistance ability to the penetration of alkali metals than pith based composite cathode, and phenolic aldehyde based composite cathode exhibits the strongest resistance ability. The penetration rate, the diffusion coefficient of alkali metals in phenolic aldehyde based TiB2-C composite cathode and the corresponding corrosion rate are 4.72 mm/h, 2.24×10^-5 cm^2/s and 2.31 mm/a, respectively.展开更多
TiB2/Al-30Si composites were fabricated via in-situ melt reaction under high-energy ultrasonic field. The microstructure and wear properties of the composite were investigated by XRD, SEM and dry sliding testing. The ...TiB2/Al-30Si composites were fabricated via in-situ melt reaction under high-energy ultrasonic field. The microstructure and wear properties of the composite were investigated by XRD, SEM and dry sliding testing. The results indicate that TiB2 reinforcement particles are uniformly distributed in the aluminum matrix under high-energy ultrasonic field. The morphology of the TiB2 particles is in circle-shape or quadrangle-shape, and the size of the particles is 0.1-1.5μm. The primary silicon particles are in quadrangle-shape and the average size of them is about 10μm. Hardness values of the Al-30Si matrix alloy and the TiB2/Al-30Si composites considerably increase as the high energy ultrasonic power increases. In particular, the maximum hardness value of the in-situ composites is about 1.3 times as high as that of the matrix alloy when the ultrasonic power is 1.2 kW, reaching 412 MPa. Meanwhile, the wear resistance of the in-situ TiB2/Al-30Si composites prepared under high-energy ultrasonic field is obviously improved and is insensitive to the applied loads of the dry sliding testing.展开更多
(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with...(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with the TiB2+Al2O3 content in the NiAl matrix. TiB2 particles take a great variety of elementary shapes such as white bars, plates, herringbones, regular cubes and cuboids. These results outline a strategy of self-assembly processes in real time to build diversified microstructures. Some TiB2 grains in sizes of 2-5μm are embeded in Al2O3 clusters, while a small number of TiB2 particles disperse in the NiAl matrix. It is believed that the higher the TiB2+Al2O3 content is, the more the regular shapes and homogeneous distributions of TiB2 and Al2O3 will be present in the NiAl matrix.展开更多
The hot forming behavior,failure mechanism,and microstructure evolution of in-situ TiB_(2)particle-reinforced 7075 aluminum matrix composite were investigated by isothermal compression test under different deformation...The hot forming behavior,failure mechanism,and microstructure evolution of in-situ TiB_(2)particle-reinforced 7075 aluminum matrix composite were investigated by isothermal compression test under different deformation conditions of deformation temperatures of 300−450℃ and strain rates of 0.001^(−1)s^(−1).The results demonstrate that the failure behavior of the composite exhibits both particle fracture and interface debonding at low temperature and high strain rate,and dimple rupture of the matrix at high temperature and low strain rate.Full dynamic recrystallization,which improves the composite formability,occurs under conditions of high temperature(450℃)and low strain rate(0.001 s^(−1));the grain size of the matrix after hot compression was significantly smaller than that of traditional 7075Al and ex-situ particle reinforced 7075Al matrix composite.Based on the flow stress curves,a constitutive model describing the relationship of the flow stress,true strain,strain rate and temperature was proposed.Furthermore,the processing maps based on both the dynamic material modeling(DMM)and modified DMM(MDMM)were established to analyze flow instability domain of the composite and optimize hot forming processing parameters.The optimum processing domain was determined at temperatures of 425−450℃ and strain rates of 0.001−0.01 s^(−1),in which the fine grain microstructure can be gained and particle crack and interface debonding can be avoided.展开更多
The mathematical models were developed to predict the ultimate tensile strength (UTS) and hardness of Al/TiB2 MMCs fabricated by in situ reaction process. The process parameters include temperature, reaction time an...The mathematical models were developed to predict the ultimate tensile strength (UTS) and hardness of Al/TiB2 MMCs fabricated by in situ reaction process. The process parameters include temperature, reaction time and mass fraction of TiB2. The in-situ casting was carried out based on three-factor five-level central composite rotatable design using response surface methodology (RSM). The validation of the model was carried out using ANOVA. The mathematical models developed for the mechanical properties were predicted at 95% confidence limit.展开更多
The electrical resistivity of TiB2/C cathode composite coating at different temperatures was measured with the electrical conductivity test device; the effects of TiB2 content and kinds of carbonaceous fillers as well...The electrical resistivity of TiB2/C cathode composite coating at different temperatures was measured with the electrical conductivity test device; the effects of TiB2 content and kinds of carbonaceous fillers as well as their mean particle size on their electrical resistivities were investigated. The results show that electrical resistivity of the coating decreases with the increase of TiB2 content and the decrease of its mean particle size. When the mass fraction of TiB2 increases from 30% to 60%, the electrical resistivity of the coating at room temperature decreases from 31.2μΩ·m to 23.8μΩ·m. The electrical resistivity of the coating at 960℃ lowers from 76.1μΩ· m to 38.4μΩ·m with the decrease of TiB2 mean particle size from 12μm to 1μm. The kinds of carbonaceous fillers have great influence on the electrical resistivity of TiB2/C composite coating at 960℃, when the graphite, petroleum coke and anthracite are used as fillers, the electrical resistivities of the coating are 20.3μΩ·m, 53.7μΩ·m and 87.2μΩ·m, respectively. For the coating with petroleum coke filler, its electrical resistivity decreases with the increase of the mean particle size of petroleum coke filler. The electrical resistivity at 960℃ decreases from 56.2μΩ·m to 48.2μΩ·m with the mean particle size of petroleum coke increasing from 44μm to 1200μm. However, too big carbonaceous particle size has adverse influence on the abrasion resistance of coating. Its proper mean particle size is 420μm.展开更多
TiB2 and Dy2O3 were used as codeposited particles in the preparation of Ni-TiB2-Dy2O3 composite coatings to improve its performance. Ni-TiB2-Dy2O3 composite coatings were prepared by electrodeposition method with a ni...TiB2 and Dy2O3 were used as codeposited particles in the preparation of Ni-TiB2-Dy2O3 composite coatings to improve its performance. Ni-TiB2-Dy2O3 composite coatings were prepared by electrodeposition method with a nickel cetyltrimethylammonium bromide and hexadecylpyridinium bromide solution containing TiB2 and Dy2O3 particles. The content of codeposited TiB2 and Dy2O3 in the composite coatings was controlled by adding TiB2 and Dy2O3 particles of different concentrations into the solution, respectively. The effects of TiB2 and Dy2O3 content on microhardness, wear mass loss and friction coefficients of composite coatings were investigated. The composite coatings were characterized by X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectrometer (ICP-AES) and scanning electron microscopy (SEM) techniques. Ni-TiBE-Dy2O3 composite coatings showed higher microhardness, lower wear mass loss and friction coefficient compared with those of the pure Ni coating and Ni-TiB2 composite coatings. The wear mass loss of Ni-TiB2-Dy2O3 composite coatings was 9 and 1.57 times lower than that of the pure Ni coating and Ni-TiB2 composite coatings, respectively. The friction coefficient of pure Ni coating, Ni-TiB2 and Ni-TiB2-Dy2O3 composite coatings were 0.723, 0.815 and 0.619, respectively. Ni-TiBE-Dy2O3 composite coatings displayed the least friction coefficient among the three coatings. Dy2O3 particles in composite coatings might serve as a solid lubricant between contact surfaces to decrease the friction coefficient and abate the wear of the composite coatings. The loading-bearing capacity and the wear-reducing effect of the Dy2O3 particles were closely related to the content of Dy2O3 particles in the composite coatings.展开更多
A kind of Al-TiB2/TiC in situ composite with a homogenous microstructure was successfully prepared through in situ reaction of pure Ti and Al-B-C alloy with molten aluminum.In order to improve the distribution of the ...A kind of Al-TiB2/TiC in situ composite with a homogenous microstructure was successfully prepared through in situ reaction of pure Ti and Al-B-C alloy with molten aluminum.In order to improve the distribution of the particles and mechanical properties of the composites,subsequent hot rolling with increasing reduction was carried out.The microstructure evolution of the composites was characterized using field emission scanning electron microscopy(FESEM)and the mechanical properties were studied through tensile tests and microhardness measurement.It is found that both the microstructure uniformity and mechanical properties of the composites are significantly improved with increasing rolling reduction.The ultimate tensile strength and microhardness of the composites with90%rolling reduction reach185.9MPa and HV59.8,respectively,140%and35%higher than those of as-cast ones.Furthermore,the strengthening mechanism of the composite was analyzed based on the fracture morphologies.展开更多
In situ TiB2/Cu composites were fabricated by both solid-liquid(S-L)and liquid-liquid(L-L)reactive spray deposition in combination with cold rolling and annealing.The microstructure and properties of the fabricated Ti...In situ TiB2/Cu composites were fabricated by both solid-liquid(S-L)and liquid-liquid(L-L)reactive spray deposition in combination with cold rolling and annealing.The microstructure and properties of the fabricated TiB2/Cu composites were investigated.The results show that the reactive mode and rolling treatment are the main factors affecting the microstructure and properties of the TiB2/Cu composite.The in situ reaction in the L-L reaction can be carried out more completely.By controlling the rolling and annealing process,the relative density and the properties of the as-deposited composites are optimized.The comprehensive performance of the deformed TiB2/Cu composite prepared by L-L reactive spray deposition(401 MPa and 83.5%IACS)is better than that by S-L reactive spray deposition(520 MPa and 20.2%IACS).展开更多
A novel technique for fabricating TiB_2/Al composites in molten aluminum was introduced. The formation mechanism of brittleAl,Ti particulates up to 30 m in size produced in the composites was studied and a method of e...A novel technique for fabricating TiB_2/Al composites in molten aluminum was introduced. The formation mechanism of brittleAl,Ti particulates up to 30 m in size produced in the composites was studied and a method of eliminating them was proposed. The resultsshow that (l) the brittle Al,Ti particulates are always present in the composites when the molar ratio of Ti to B 'T,:nB is l:2; and (2) theformation of the brittle Al,Ti phase can be avoided entirely from the final product by using a proper 'T,:nB of l:4 in the Ti-B-Al preforms.In the former case, the tensile elongation of the composite is only 4%, much lower than the value of pure aluminum (20%). In the latercase, the tensile elongation of this composite is 10%, higher than the value of the composite with a lot ofAl,Ti (4%), whereas the ultimatetensile stfength of the former is nearly that of the later.展开更多
In-situ TiB2 particles reinforced ZA27 composite was prepared by the stir-casting technique and a two-step method. TiB2/Al composite was produced by incorporating K2TiF6, KBF4 salts and other agents into Al melt. As a...In-situ TiB2 particles reinforced ZA27 composite was prepared by the stir-casting technique and a two-step method. TiB2/Al composite was produced by incorporating K2TiF6, KBF4 salts and other agents into Al melt. As a master alloy, TiB2/Al composite was used to manufacture TiB2/ZA27 composite, which results in the generation of well-distributed reinforcing TiB2 phase. The hardness, friction and wear behavior of TiB2/ZA27 composite were investigated. The results show that the hardness of the composite is enhanced with increasing the content of TiB2 particles, the incorporation of TiB2 reduces the wear rate of TiB2/ZA27 composite and improves the friction property under lubricated and dry sliding friction conditions. The worn track width of ZA27 alloy is 1.6 and 2.5 times as long as that of (2.1%)TiB2/ZA27 composite at 150N and 700N load under lubricated conditions, which indicates that TiB2/ZA27 composite possesses higher bearing ability.展开更多
Mechanical properties were tested for in situ TiB2/A357 composite fabricated by LSM (mixed salts reaction) method. Micro structures of as cast and plastic deformed TiB2/A357 were investigated. The results show that th...Mechanical properties were tested for in situ TiB2/A357 composite fabricated by LSM (mixed salts reaction) method. Micro structures of as cast and plastic deformed TiB2/A357 were investigated. The results show that there is a low misfit between (200) Al and (101)TiB2 with [011]//Al [101]TiB2. There is a change from fully dendritic structure of the α-Al of A357 to a rosette-type structure of TiB2/A357. Significant increases in proof stress and Young's modulus can be obtained at low TiB2 additions. There exist dislocation loops around neighboring TiB2 particles with about 0.1μm in diameter and dislocation multiplication near TiB2 particles.展开更多
In situ TiB2 reinforced 6351 Al alloy composites were subjected to compression testing at strain rates and temperatures ranging from 0.001 to 10 s -1 and from 300 to 550?欲espectively,using Gleeble-1500D system.And t...In situ TiB2 reinforced 6351 Al alloy composites were subjected to compression testing at strain rates and temperatures ranging from 0.001 to 10 s -1 and from 300 to 550?欲espectively,using Gleeble-1500D system.And the associated microstructural transformations and instability phenomena were studied by observations of the optical and transmission electron microscope.The power dissipation efficiency and instability parameter were calculated following the dynamic material model and plotted with the temperature and logarithm of strain rate to obtain processing maps for strains of 0.2,0.4,and 0.6.The processing maps present the instability zones at higher strain rates.The result shows that with increasing strain,the instability zones enlarge.The microstructural examination shows that the interface separates even the particle cracks or aligns along the shear direction of the adiabatic shear band in the instability zones.Two domains of higher efficiencies correspond to dynamic recovery and dynamic recrystallization during the hot deformation.Using the processing maps,the optimum processing parameters of stain rates and temperatures can be chosen for effective hot deformation of TiB2/6351 composites.展开更多
Pitch and TiB2/C green composite cathode material were respectively analyzed with simultaneous DSC-TGA, and effects of three baking processes of TiB2/C composite cathode material, i.e. K25, K5 and M5, on properties of...Pitch and TiB2/C green composite cathode material were respectively analyzed with simultaneous DSC-TGA, and effects of three baking processes of TiB2/C composite cathode material, i.e. K25, K5 and M5, on properties of TiB2/C composite cathode material were investigated. The results show that thermogravimetrie behavior of pitch and TiB2/C green composite cathode is similar, and appears the largest mass loss rate in the temperature range from 200 to 600 ℃. The bulk density variation of sample K5 before and after baking is the largest (11.9%), that of sample K25 is the second, and that of sample M5 is the smallest (6.7%). The crushing strength of sample M5 is the biggest (51.2 MPa), that of sample K2.5 is the next, and that of sample K5 is the smallest (32.8 MPa). But, the orders of the electrical resistivity and electrolysis expansion of samples are just opposite with the order of crushing strength. The heating rate has a great impact on the microstructure of sample. The faster the heating rate is, the bigger the pore size and porosity of sample are. Compared with the heating rate between 200 and 600℃ of samples K25 and K5, that of sample M5 is slower and suitable for baking process of TiB2/C composite cathode material.展开更多
Reaction-milled NiAl-TiB2 composite was fabricated by mechanical alloying elemental powders and hot pressing. TiB2 particles are distributed mostly in grain boundaries of the matrix. The compressive strain to failure ...Reaction-milled NiAl-TiB2 composite was fabricated by mechanical alloying elemental powders and hot pressing. TiB2 particles are distributed mostly in grain boundaries of the matrix. The compressive strain to failure of the composite at RT is about twice that of cast NiAl. The compressive yield stress at high temperatures is about 4.5 times higher than that of extruded NiAl, and is also much stronger than XD NiAl-TiB2 composites. Deformation behavior between 1000~1100℃ with different strain rates has been investigated展开更多
A suitable combustion synthesis and densification process was designed to fabricate dense NiAl/ TiB2 composites from Ni-Al- Ti-B system. Combustion synthesis processing and microstructure characteristics of products w...A suitable combustion synthesis and densification process was designed to fabricate dense NiAl/ TiB2 composites from Ni-Al- Ti-B system. Combustion synthesis processing and microstructure characteristics of products were studied in detail. The results show that the amount of TiB2 ceramics has a great influence on the combustion synthesis processing and microstructure; with the increase of the amount of TiB2 ceramics, the combustion temperature and combustion velocity increase rapidly. The volume of synthesized products and the grain size of ceramics particle size are also affected by the amount of TiB2 ceramics. TiB2 ceramics fiber can be produced in this synthesis system. The dense NiAl/ TiB2 composites with residual porosity of no more than 1% are fabricated by the combustion synthesis and hot pressing, the mechanical properties of the dense NiAl/ TiB2 composites increase with increase of the amount of TiB2 ceramics.展开更多
Hardness of the TiB2/7075 composite increased with increasing deformation temperature. In the annealed TiB2/7075 composite, a great amount of fiber-like MgZn2 phases (about 1 mum in length) and small MgZn2 phases (abo...Hardness of the TiB2/7075 composite increased with increasing deformation temperature. In the annealed TiB2/7075 composite, a great amount of fiber-like MgZn2 phases (about 1 mum in length) and small MgZn2 phases (about 100 nm in size) were precipitated nearby the grain boundaries where the TiB2 particles exist. After deformation at 300 degreesC, some of the large precipitates and all the small precipitates in these area dissolved into the matrix, meanwhile, fine precipitates were formed in grains. After deformation at 450 degreesC, all the precipitates in the annealed composite dissolved into the matrix, and new phases were precipitated in grains. The dissolution of the large fiber-like precipitate makes the saturation level of the matrix increased and leads to an increased solution hardening and natural aging, which contribute much to the hardening effect.展开更多
基金Projects(51071035,51274054,51375070)supported by the National Natural Science Foundation of ChinaProject(313011)supported by the Key Project of Ministry of Education of China
文摘Zn-Al-Cu-TiB2(ZA27-TiB2) in situ composites were fabricated via reactions between molten aluminum and mixed halide salts(K2TiF6 and KBF4) at temperature of 875 °C. The microstructure, mechanical properties and wear behavior of the composites were investigated. Microstructure analysis shows that fine and clean TiB2 particles distribute uniformly through the matrix. The mechanical properties of the composites increase with the increase in TiB2 content. As TiB2 content increases to 5%(mass fraction), an improvement of HB 18 in hardness and 49 MPa in ultimate tensile strength(UTS) is achieved. The overall results reveal that the composites possess low friction coefficients and the wear rate is reduced from 5.9×10-3 to 1.3×10-3 mm3/m after incorporating 5% TiB2. Friction coefficient and worn surface analysis indicate that there is a change in the wear mechanism in the initial stage of wear test after introducing in situ TiB2 particles into the matrix.
基金The work was supported by the Foundation of Aerospace Innovation Fund and the National Natural Science Foundation of China(No.90505015)the Foundation of National Key Laboratory for Remanufacturing.
文摘TiC-TiB2-Cu composites were produced by self-propagating high-temperature synthesis combined with pseudo hot isostatic pressing using Ti, B4C and Cu powders. The microstructure and mechanical properties of the composites were investigated. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that the final products were only TiC, TiB2 and Cu phases. The clubbed TiB2 grains and spheroidal or irregular TiC grains were found in the microstructure of synthesized products. The reaction temperature and grain size of TiB2 and TiC particles decreased with increasing Cu content. The introduction of Cu into the composites resulted in a drastic increase in the relative density and flexual strength, and the maximum values were obtained with the addition of 20 wt pct, while the fracture toughness was the best when Cu content was 40 wt pct.
基金Project (2008AA03A239) supported by the High-tech Research and Development Program of China
文摘In-situ TiB2 particles reinforced 2014 aluminum alloy composite was prepared using an exothermic reaction process with K2TiF6 and KBF4 salts. The effects of CeO2 additive on the microstructure and properties of in-situ TiB2/2014 composite were investigated. The results showed that CeO2 at high temperature exhibits the same function as Ce. When 0.5% (mass fraction) CeO2 additive was added, the dispersion of TiB2 particles in the matrix is improved significantly, and particles have no obvious settlement. The dispersing mechanism of TiB2 particles in 2014 Al alloy matrix was explained. Compared with the composite without CeO2, the hardness, tensile strength, yield strength and elongation of the composite with CeO2 addition are greatly increased in as-cast condition.
基金Project (51304152) supported by the National Natural Science Foundation of ChinaProject (2013JQ7016) supported by the Natural Science Foundation of Shanxi Province,ChinaProject (2013JK0904) supported by Shanxi Provincial Education Department,China
文摘In electrolyte melts containing K at low temperature, the penetrative and migratory path of alkali metals (K and Na) in pitch, furan, phenolic aldehyde and epoxy based TiB2-C composite cathodes during the electrolysis process were studied by EDS and self-made modified Rapoport apparatus. The electrolysis expansion rates, the diffusion coefficients of the alkali metals and the corrosion rates of the composite cathode were also calculated and discussed. The results show that no matter what kind of binder is used, alkali metals have the same penetrative path in composite cathodes:firstly in pore, then in binder and finally in carbonaceous aggregates. K and Na penetrate into both binder and carbonaceous aggregates, which leads to the expansion of composite cathodes, and K has stronger penetration ability than Na. Electrolysis expansion rate of resin based composite cathode is smaller than that of pitch based composite cathodes, and so do the diffusion coefficient and corrosion rate. Resin based composite cathode has better resistance ability to the penetration of alkali metals than pith based composite cathode, and phenolic aldehyde based composite cathode exhibits the strongest resistance ability. The penetration rate, the diffusion coefficient of alkali metals in phenolic aldehyde based TiB2-C composite cathode and the corresponding corrosion rate are 4.72 mm/h, 2.24×10^-5 cm^2/s and 2.31 mm/a, respectively.
基金Project(51174098)supported by the National Natural Science Foundation of ChinaProject(kjsmcx0903)supported by the Foundation of the Jiangsu Province Key Laboratory of Materials Tribology,China+2 种基金Project(1202015B)supported by the Postdoctoral Science Foundation of Jiangsu Province,ChinaProject(03)supported by the Undergraduate Practice-Innovation Training Foundation of Jiangsu University,ChinaProjects(GY2012020,GY2013032)supported by the Science and Technology Support Plan Project Foundation of Zhenjiang City,China
文摘TiB2/Al-30Si composites were fabricated via in-situ melt reaction under high-energy ultrasonic field. The microstructure and wear properties of the composite were investigated by XRD, SEM and dry sliding testing. The results indicate that TiB2 reinforcement particles are uniformly distributed in the aluminum matrix under high-energy ultrasonic field. The morphology of the TiB2 particles is in circle-shape or quadrangle-shape, and the size of the particles is 0.1-1.5μm. The primary silicon particles are in quadrangle-shape and the average size of them is about 10μm. Hardness values of the Al-30Si matrix alloy and the TiB2/Al-30Si composites considerably increase as the high energy ultrasonic power increases. In particular, the maximum hardness value of the in-situ composites is about 1.3 times as high as that of the matrix alloy when the ultrasonic power is 1.2 kW, reaching 412 MPa. Meanwhile, the wear resistance of the in-situ TiB2/Al-30Si composites prepared under high-energy ultrasonic field is obviously improved and is insensitive to the applied loads of the dry sliding testing.
基金Project(51272141)supported by the National Natural Science Foundation of ChinaProject(ts20110828)supported by the Taishan Scholars Project of Shandong Province,ChinaProject(2015AA034404)supported by the Ministry of Science and Technology of China
文摘(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with the TiB2+Al2O3 content in the NiAl matrix. TiB2 particles take a great variety of elementary shapes such as white bars, plates, herringbones, regular cubes and cuboids. These results outline a strategy of self-assembly processes in real time to build diversified microstructures. Some TiB2 grains in sizes of 2-5μm are embeded in Al2O3 clusters, while a small number of TiB2 particles disperse in the NiAl matrix. It is believed that the higher the TiB2+Al2O3 content is, the more the regular shapes and homogeneous distributions of TiB2 and Al2O3 will be present in the NiAl matrix.
基金the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2018-ZX04044001-008)the National Natural Science Foundation of China(No.52075328).
文摘The hot forming behavior,failure mechanism,and microstructure evolution of in-situ TiB_(2)particle-reinforced 7075 aluminum matrix composite were investigated by isothermal compression test under different deformation conditions of deformation temperatures of 300−450℃ and strain rates of 0.001^(−1)s^(−1).The results demonstrate that the failure behavior of the composite exhibits both particle fracture and interface debonding at low temperature and high strain rate,and dimple rupture of the matrix at high temperature and low strain rate.Full dynamic recrystallization,which improves the composite formability,occurs under conditions of high temperature(450℃)and low strain rate(0.001 s^(−1));the grain size of the matrix after hot compression was significantly smaller than that of traditional 7075Al and ex-situ particle reinforced 7075Al matrix composite.Based on the flow stress curves,a constitutive model describing the relationship of the flow stress,true strain,strain rate and temperature was proposed.Furthermore,the processing maps based on both the dynamic material modeling(DMM)and modified DMM(MDMM)were established to analyze flow instability domain of the composite and optimize hot forming processing parameters.The optimum processing domain was determined at temperatures of 425−450℃ and strain rates of 0.001−0.01 s^(−1),in which the fine grain microstructure can be gained and particle crack and interface debonding can be avoided.
文摘The mathematical models were developed to predict the ultimate tensile strength (UTS) and hardness of Al/TiB2 MMCs fabricated by in situ reaction process. The process parameters include temperature, reaction time and mass fraction of TiB2. The in-situ casting was carried out based on three-factor five-level central composite rotatable design using response surface methodology (RSM). The validation of the model was carried out using ANOVA. The mathematical models developed for the mechanical properties were predicted at 95% confidence limit.
基金Project(2005CB623703) supported by the State Key Fundamental Research and Development Programof China project(5JJ30103) supported by the Natural Science Foundation of Hunan Province
文摘The electrical resistivity of TiB2/C cathode composite coating at different temperatures was measured with the electrical conductivity test device; the effects of TiB2 content and kinds of carbonaceous fillers as well as their mean particle size on their electrical resistivities were investigated. The results show that electrical resistivity of the coating decreases with the increase of TiB2 content and the decrease of its mean particle size. When the mass fraction of TiB2 increases from 30% to 60%, the electrical resistivity of the coating at room temperature decreases from 31.2μΩ·m to 23.8μΩ·m. The electrical resistivity of the coating at 960℃ lowers from 76.1μΩ· m to 38.4μΩ·m with the decrease of TiB2 mean particle size from 12μm to 1μm. The kinds of carbonaceous fillers have great influence on the electrical resistivity of TiB2/C composite coating at 960℃, when the graphite, petroleum coke and anthracite are used as fillers, the electrical resistivities of the coating are 20.3μΩ·m, 53.7μΩ·m and 87.2μΩ·m, respectively. For the coating with petroleum coke filler, its electrical resistivity decreases with the increase of the mean particle size of petroleum coke filler. The electrical resistivity at 960℃ decreases from 56.2μΩ·m to 48.2μΩ·m with the mean particle size of petroleum coke increasing from 44μm to 1200μm. However, too big carbonaceous particle size has adverse influence on the abrasion resistance of coating. Its proper mean particle size is 420μm.
基金supported by the Science Technology Foundation of Shanghai (072305113)the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning and Science Technology Foundation of Shanghai Institute of Technology (KJ2008-07)
文摘TiB2 and Dy2O3 were used as codeposited particles in the preparation of Ni-TiB2-Dy2O3 composite coatings to improve its performance. Ni-TiB2-Dy2O3 composite coatings were prepared by electrodeposition method with a nickel cetyltrimethylammonium bromide and hexadecylpyridinium bromide solution containing TiB2 and Dy2O3 particles. The content of codeposited TiB2 and Dy2O3 in the composite coatings was controlled by adding TiB2 and Dy2O3 particles of different concentrations into the solution, respectively. The effects of TiB2 and Dy2O3 content on microhardness, wear mass loss and friction coefficients of composite coatings were investigated. The composite coatings were characterized by X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectrometer (ICP-AES) and scanning electron microscopy (SEM) techniques. Ni-TiBE-Dy2O3 composite coatings showed higher microhardness, lower wear mass loss and friction coefficient compared with those of the pure Ni coating and Ni-TiB2 composite coatings. The wear mass loss of Ni-TiB2-Dy2O3 composite coatings was 9 and 1.57 times lower than that of the pure Ni coating and Ni-TiB2 composite coatings, respectively. The friction coefficient of pure Ni coating, Ni-TiB2 and Ni-TiB2-Dy2O3 composite coatings were 0.723, 0.815 and 0.619, respectively. Ni-TiBE-Dy2O3 composite coatings displayed the least friction coefficient among the three coatings. Dy2O3 particles in composite coatings might serve as a solid lubricant between contact surfaces to decrease the friction coefficient and abate the wear of the composite coatings. The loading-bearing capacity and the wear-reducing effect of the Dy2O3 particles were closely related to the content of Dy2O3 particles in the composite coatings.
基金Project(51501092)supported by the National Natural Science Foundation of ChinaProject(30915011332)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2014M550292)supported by China Postdoctoral Science Foundation
文摘A kind of Al-TiB2/TiC in situ composite with a homogenous microstructure was successfully prepared through in situ reaction of pure Ti and Al-B-C alloy with molten aluminum.In order to improve the distribution of the particles and mechanical properties of the composites,subsequent hot rolling with increasing reduction was carried out.The microstructure evolution of the composites was characterized using field emission scanning electron microscopy(FESEM)and the mechanical properties were studied through tensile tests and microhardness measurement.It is found that both the microstructure uniformity and mechanical properties of the composites are significantly improved with increasing rolling reduction.The ultimate tensile strength and microhardness of the composites with90%rolling reduction reach185.9MPa and HV59.8,respectively,140%and35%higher than those of as-cast ones.Furthermore,the strengthening mechanism of the composite was analyzed based on the fracture morphologies.
基金Projects(U1502274,51834009)supported by the National Natural Science Foundation of ChinaProject(2017ZDXM-GY-028)supported by the Key Research and Development Program of Shaanxi,China。
文摘In situ TiB2/Cu composites were fabricated by both solid-liquid(S-L)and liquid-liquid(L-L)reactive spray deposition in combination with cold rolling and annealing.The microstructure and properties of the fabricated TiB2/Cu composites were investigated.The results show that the reactive mode and rolling treatment are the main factors affecting the microstructure and properties of the TiB2/Cu composite.The in situ reaction in the L-L reaction can be carried out more completely.By controlling the rolling and annealing process,the relative density and the properties of the as-deposited composites are optimized.The comprehensive performance of the deformed TiB2/Cu composite prepared by L-L reactive spray deposition(401 MPa and 83.5%IACS)is better than that by S-L reactive spray deposition(520 MPa and 20.2%IACS).
文摘A novel technique for fabricating TiB_2/Al composites in molten aluminum was introduced. The formation mechanism of brittleAl,Ti particulates up to 30 m in size produced in the composites was studied and a method of eliminating them was proposed. The resultsshow that (l) the brittle Al,Ti particulates are always present in the composites when the molar ratio of Ti to B 'T,:nB is l:2; and (2) theformation of the brittle Al,Ti phase can be avoided entirely from the final product by using a proper 'T,:nB of l:4 in the Ti-B-Al preforms.In the former case, the tensile elongation of the composite is only 4%, much lower than the value of pure aluminum (20%). In the latercase, the tensile elongation of this composite is 10%, higher than the value of the composite with a lot ofAl,Ti (4%), whereas the ultimatetensile stfength of the former is nearly that of the later.
文摘In-situ TiB2 particles reinforced ZA27 composite was prepared by the stir-casting technique and a two-step method. TiB2/Al composite was produced by incorporating K2TiF6, KBF4 salts and other agents into Al melt. As a master alloy, TiB2/Al composite was used to manufacture TiB2/ZA27 composite, which results in the generation of well-distributed reinforcing TiB2 phase. The hardness, friction and wear behavior of TiB2/ZA27 composite were investigated. The results show that the hardness of the composite is enhanced with increasing the content of TiB2 particles, the incorporation of TiB2 reduces the wear rate of TiB2/ZA27 composite and improves the friction property under lubricated and dry sliding friction conditions. The worn track width of ZA27 alloy is 1.6 and 2.5 times as long as that of (2.1%)TiB2/ZA27 composite at 150N and 700N load under lubricated conditions, which indicates that TiB2/ZA27 composite possesses higher bearing ability.
文摘Mechanical properties were tested for in situ TiB2/A357 composite fabricated by LSM (mixed salts reaction) method. Micro structures of as cast and plastic deformed TiB2/A357 were investigated. The results show that there is a low misfit between (200) Al and (101)TiB2 with [011]//Al [101]TiB2. There is a change from fully dendritic structure of the α-Al of A357 to a rosette-type structure of TiB2/A357. Significant increases in proof stress and Young's modulus can be obtained at low TiB2 additions. There exist dislocation loops around neighboring TiB2 particles with about 0.1μm in diameter and dislocation multiplication near TiB2 particles.
文摘In situ TiB2 reinforced 6351 Al alloy composites were subjected to compression testing at strain rates and temperatures ranging from 0.001 to 10 s -1 and from 300 to 550?欲espectively,using Gleeble-1500D system.And the associated microstructural transformations and instability phenomena were studied by observations of the optical and transmission electron microscope.The power dissipation efficiency and instability parameter were calculated following the dynamic material model and plotted with the temperature and logarithm of strain rate to obtain processing maps for strains of 0.2,0.4,and 0.6.The processing maps present the instability zones at higher strain rates.The result shows that with increasing strain,the instability zones enlarge.The microstructural examination shows that the interface separates even the particle cracks or aligns along the shear direction of the adiabatic shear band in the instability zones.Two domains of higher efficiencies correspond to dynamic recovery and dynamic recrystallization during the hot deformation.Using the processing maps,the optimum processing parameters of stain rates and temperatures can be chosen for effective hot deformation of TiB2/6351 composites.
基金Project (2005CB623703) supported by the Major State Basic Research and Development Program of ChinaProject (2008AA030502) supported by the National High-Tech Research and Development Program of China
文摘Pitch and TiB2/C green composite cathode material were respectively analyzed with simultaneous DSC-TGA, and effects of three baking processes of TiB2/C composite cathode material, i.e. K25, K5 and M5, on properties of TiB2/C composite cathode material were investigated. The results show that thermogravimetrie behavior of pitch and TiB2/C green composite cathode is similar, and appears the largest mass loss rate in the temperature range from 200 to 600 ℃. The bulk density variation of sample K5 before and after baking is the largest (11.9%), that of sample K25 is the second, and that of sample M5 is the smallest (6.7%). The crushing strength of sample M5 is the biggest (51.2 MPa), that of sample K2.5 is the next, and that of sample K5 is the smallest (32.8 MPa). But, the orders of the electrical resistivity and electrolysis expansion of samples are just opposite with the order of crushing strength. The heating rate has a great impact on the microstructure of sample. The faster the heating rate is, the bigger the pore size and porosity of sample are. Compared with the heating rate between 200 and 600℃ of samples K25 and K5, that of sample M5 is slower and suitable for baking process of TiB2/C composite cathode material.
文摘Reaction-milled NiAl-TiB2 composite was fabricated by mechanical alloying elemental powders and hot pressing. TiB2 particles are distributed mostly in grain boundaries of the matrix. The compressive strain to failure of the composite at RT is about twice that of cast NiAl. The compressive yield stress at high temperatures is about 4.5 times higher than that of extruded NiAl, and is also much stronger than XD NiAl-TiB2 composites. Deformation behavior between 1000~1100℃ with different strain rates has been investigated
文摘A suitable combustion synthesis and densification process was designed to fabricate dense NiAl/ TiB2 composites from Ni-Al- Ti-B system. Combustion synthesis processing and microstructure characteristics of products were studied in detail. The results show that the amount of TiB2 ceramics has a great influence on the combustion synthesis processing and microstructure; with the increase of the amount of TiB2 ceramics, the combustion temperature and combustion velocity increase rapidly. The volume of synthesized products and the grain size of ceramics particle size are also affected by the amount of TiB2 ceramics. TiB2 ceramics fiber can be produced in this synthesis system. The dense NiAl/ TiB2 composites with residual porosity of no more than 1% are fabricated by the combustion synthesis and hot pressing, the mechanical properties of the dense NiAl/ TiB2 composites increase with increase of the amount of TiB2 ceramics.
基金This work was supported by Alexander von Humboldt Foundation of Germany and the National Natural Science Foundation of China under the grant number of
文摘Hardness of the TiB2/7075 composite increased with increasing deformation temperature. In the annealed TiB2/7075 composite, a great amount of fiber-like MgZn2 phases (about 1 mum in length) and small MgZn2 phases (about 100 nm in size) were precipitated nearby the grain boundaries where the TiB2 particles exist. After deformation at 300 degreesC, some of the large precipitates and all the small precipitates in these area dissolved into the matrix, meanwhile, fine precipitates were formed in grains. After deformation at 450 degreesC, all the precipitates in the annealed composite dissolved into the matrix, and new phases were precipitated in grains. The dissolution of the large fiber-like precipitate makes the saturation level of the matrix increased and leads to an increased solution hardening and natural aging, which contribute much to the hardening effect.