期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effect of baking processes on properties of TiB_2/C composite cathode material 被引量:1
1
作者 吕晓军 李劼 +1 位作者 赖延清 方钊 《Journal of Central South University》 SCIE EI CAS 2009年第3期429-433,共5页
Pitch and TiB2/C green composite cathode material were respectively analyzed with simultaneous DSC-TGA, and effects of three baking processes of TiB2/C composite cathode material, i.e. K25, K5 and M5, on properties of... Pitch and TiB2/C green composite cathode material were respectively analyzed with simultaneous DSC-TGA, and effects of three baking processes of TiB2/C composite cathode material, i.e. K25, K5 and M5, on properties of TiB2/C composite cathode material were investigated. The results show that thermogravimetrie behavior of pitch and TiB2/C green composite cathode is similar, and appears the largest mass loss rate in the temperature range from 200 to 600 ℃. The bulk density variation of sample K5 before and after baking is the largest (11.9%), that of sample K25 is the second, and that of sample M5 is the smallest (6.7%). The crushing strength of sample M5 is the biggest (51.2 MPa), that of sample K2.5 is the next, and that of sample K5 is the smallest (32.8 MPa). But, the orders of the electrical resistivity and electrolysis expansion of samples are just opposite with the order of crushing strength. The heating rate has a great impact on the microstructure of sample. The faster the heating rate is, the bigger the pore size and porosity of sample are. Compared with the heating rate between 200 and 600℃ of samples K25 and K5, that of sample M5 is slower and suitable for baking process of TiB2/C composite cathode material. 展开更多
关键词 aluminum electrolysis tib2/C composite cathode material baking process
下载PDF
Electrical resistivity of TiB_2/C composite cathode coating for aluminum electrolysis 被引量:6
2
作者 李劼 吕晓军 +2 位作者 李庆余 赖延清 杨建红 《Journal of Central South University of Technology》 EI 2006年第3期209-213,共5页
The electrical resistivity of TiB2/C cathode composite coating at different temperatures was measured with the electrical conductivity test device; the effects of TiB2 content and kinds of carbonaceous fillers as well... The electrical resistivity of TiB2/C cathode composite coating at different temperatures was measured with the electrical conductivity test device; the effects of TiB2 content and kinds of carbonaceous fillers as well as their mean particle size on their electrical resistivities were investigated. The results show that electrical resistivity of the coating decreases with the increase of TiB2 content and the decrease of its mean particle size. When the mass fraction of TiB2 increases from 30% to 60%, the electrical resistivity of the coating at room temperature decreases from 31.2μΩ·m to 23.8μΩ·m. The electrical resistivity of the coating at 960℃ lowers from 76.1μΩ· m to 38.4μΩ·m with the decrease of TiB2 mean particle size from 12μm to 1μm. The kinds of carbonaceous fillers have great influence on the electrical resistivity of TiB2/C composite coating at 960℃, when the graphite, petroleum coke and anthracite are used as fillers, the electrical resistivities of the coating are 20.3μΩ·m, 53.7μΩ·m and 87.2μΩ·m, respectively. For the coating with petroleum coke filler, its electrical resistivity decreases with the increase of the mean particle size of petroleum coke filler. The electrical resistivity at 960℃ decreases from 56.2μΩ·m to 48.2μΩ·m with the mean particle size of petroleum coke increasing from 44μm to 1200μm. However, too big carbonaceous particle size has adverse influence on the abrasion resistance of coating. Its proper mean particle size is 420μm. 展开更多
关键词 aluminum electrolysis composite material tib2 coating electrical resistivity
下载PDF
Titanium diboride-metals gradient materials prepared by field activated diffusion bonding process
3
作者 陈少平 张楠 +2 位作者 孟庆森 U.Cosan Z.A.Munir 《China Welding》 EI CAS 2009年第4期10-14,共5页
Functionally gradient samples are prepared by getting metal Ni or Cu bonded with Ni-matrix composites reinforced by TiB2 particles by field activated diffusion bonding process. The intermetallic compound of Ni3Al has ... Functionally gradient samples are prepared by getting metal Ni or Cu bonded with Ni-matrix composites reinforced by TiB2 particles by field activated diffusion bonding process. The intermetallic compound of Ni3Al has been applied as a mediate layer in order to reduce residual stress. The microstracture, phase composition of the interfaces between the metal and Ni3Al are determined and the mechanical properties of the gradient materials are characterized. Elemental concentration profiles across the interfaces between layers showed significant diffusion dissolution and formation of firm bonds. Measured micro-hardness values of the sample increased monotonically from the metal substrate to the surface layer of composites. The values for the surface composite layer ranged from about 2 000 HK to 3 300 HK. The results of this investigation demonstrate the feasibility of field activated diffusion bonding process for rapid preparation of FGMs. 展开更多
关键词 electric field functionally gradient materials tib2 NI3AL diffusion bonding
下载PDF
Mechanical performance of 22SiMn2TiB steel welded with lowtransformation- temperature filler wire and stainless steel filler wire
4
作者 Zi-dong Lin Kai-jie Song +5 位作者 Zhen Sun Zi-qian Zhu Xue-feng Zhao Constantinos Goulas Wei Ya Xing-hua Yu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第4期967-981,共15页
TX-80 low-transformation-temperature(LTT)welding wire was used to replace the traditional ER 307Si welding wire to realize the connection of 22SiMn2TiB armor steel in manual overlay welding.The previously existing iss... TX-80 low-transformation-temperature(LTT)welding wire was used to replace the traditional ER 307Si welding wire to realize the connection of 22SiMn2TiB armor steel in manual overlay welding.The previously existing issues,such as welding cracks,large welding deformation,and severe welding residual stress,were solved to ensure good strength and ductility requirements.In particular,with the same welding conditions,TX-80 LTT wire eliminates welding cracks.It reduces the welding deformation no matter the base pretreatment of pre-setting angle or no pre-setting angle.By comparison,it was found that the microstructure at the TX-80 weld is mainly composed of martensite and a small amount of retained austenite.In contrast,the microstructure of the ER 307Si weld consists of a large amount of austenite and a small amount of skeleton-like ferrite.The variation trend of residual stress and microhardness from the weld to the base were investigated and compared with the mechanical properties of base materials.The TX-80 and the ER 307Si tensile samples elongation is 6.76%and 6.01%,while the ultimate tensile strengths are 877 and 667 MPa,respectively.The average impact toughness at room temperature of the ER 307Si weld is 143.9 J/cm^(2),much higher than that of the TX-80 weld,which is only 36.7 J/cm^(2).The relationship between impact and tensile properties with microstructure species and distribution was established.In addition,the fracture surface of the tensile and the impact samples was observed and analyzed.Deeper dimples,fewer pores,larger radiation zone,and shear lips of TX-80 samples indicate better tensile ductility and worse impact toughness than those of ER 307Si weld. 展开更多
关键词 Low-transformation-temperature material 22SiMn2tib steel Welding deformation Residual stress Martensitic transformation Mechanical property
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部