(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with...(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with the TiB2+Al2O3 content in the NiAl matrix. TiB2 particles take a great variety of elementary shapes such as white bars, plates, herringbones, regular cubes and cuboids. These results outline a strategy of self-assembly processes in real time to build diversified microstructures. Some TiB2 grains in sizes of 2-5μm are embeded in Al2O3 clusters, while a small number of TiB2 particles disperse in the NiAl matrix. It is believed that the higher the TiB2+Al2O3 content is, the more the regular shapes and homogeneous distributions of TiB2 and Al2O3 will be present in the NiAl matrix.展开更多
A novel technique for fabricating TiB_2/Al composites in molten aluminum was introduced. The formation mechanism of brittleAl,Ti particulates up to 30 m in size produced in the composites was studied and a method of e...A novel technique for fabricating TiB_2/Al composites in molten aluminum was introduced. The formation mechanism of brittleAl,Ti particulates up to 30 m in size produced in the composites was studied and a method of eliminating them was proposed. The resultsshow that (l) the brittle Al,Ti particulates are always present in the composites when the molar ratio of Ti to B 'T,:nB is l:2; and (2) theformation of the brittle Al,Ti phase can be avoided entirely from the final product by using a proper 'T,:nB of l:4 in the Ti-B-Al preforms.In the former case, the tensile elongation of the composite is only 4%, much lower than the value of pure aluminum (20%). In the latercase, the tensile elongation of this composite is 10%, higher than the value of the composite with a lot ofAl,Ti (4%), whereas the ultimatetensile stfength of the former is nearly that of the later.展开更多
In-situ TiB2 particles reinforced 2014 aluminum alloy composite was prepared using an exothermic reaction process with K2TiF6 and KBF4 salts. The effects of CeO2 additive on the microstructure and properties of in-sit...In-situ TiB2 particles reinforced 2014 aluminum alloy composite was prepared using an exothermic reaction process with K2TiF6 and KBF4 salts. The effects of CeO2 additive on the microstructure and properties of in-situ TiB2/2014 composite were investigated. The results showed that CeO2 at high temperature exhibits the same function as Ce. When 0.5% (mass fraction) CeO2 additive was added, the dispersion of TiB2 particles in the matrix is improved significantly, and particles have no obvious settlement. The dispersing mechanism of TiB2 particles in 2014 Al alloy matrix was explained. Compared with the composite without CeO2, the hardness, tensile strength, yield strength and elongation of the composite with CeO2 addition are greatly increased in as-cast condition.展开更多
14% and 20% (volume fraction) TiB2p/6061Al composites were fabricated by pressure infiltration method, and then were extruded. The microstructure and properties of TiB2p/Al composites before and after extrusion were s...14% and 20% (volume fraction) TiB2p/6061Al composites were fabricated by pressure infiltration method, and then were extruded. The microstructure and properties of TiB2p/Al composites before and after extrusion were studied by TEM, SEM and tensile method. The results show that TiB2 particles employed are equiaxed polyhedrals and are well wetted with the aluminum alloy. Hot extruding is effective in eliminating defects such as pores, which are induced in the fabrication process. After T6 treatment and extrusion treatment, elastic modulus, tensile strength and elongation of 14%TiB2p/6061Al composites are 107 GPa, 364.1 MPa and 9.25%, respectively. While those of 20%TiB2p/6061Al composites are 120 GPa, 472.6 MPa and 9.79%, respectively, which show high strength and plasticity. A lot of dimples and a few cracked particles are observed on the fracture surfaces of the composites, which indicates good plasticity of the composites. The high strength and plasticity of TiB2p/6061Al composites are attributed to good bonding between TiB2 particles and aluminum alloy.展开更多
Ceramic tapes, containing Al2O3-25 wt pct TiB2(B) and Al2O3-25 wt pct nano-TiC (c), have been obtained by tape casting process. Numerous tapes (about 60~80 tapes) were prepared by stacking in turn the composition (B)...Ceramic tapes, containing Al2O3-25 wt pct TiB2(B) and Al2O3-25 wt pct nano-TiC (c), have been obtained by tape casting process. Numerous tapes (about 60~80 tapes) were prepared by stacking in turn the composition (B) and (C), laminating under 10 MPa pressure, eliminating the solvent and burning out the polymer additives. The final green bodies were hot pressed at 1750℃ and 30 MPa. The composite has a bending strength of 568 MPa and a fracture toughness of 5.8 M Pa·m1/2. SEM analysis exhibits that Al2O3 particle growth was inhibited by TiC particles in C. but TiB2 particles could not hinder Al2O3 growth in B. The curves of GTA indicates that all organic additives could be removed completely above 600℃展开更多
The effects of hot extrusion and addition of Al_(2)O_(3p) on both microstructure and tribological behavior of 7075 composites were investigated via optical microscopy(OM),scanning electron microscopy(SEM),energy dispe...The effects of hot extrusion and addition of Al_(2)O_(3p) on both microstructure and tribological behavior of 7075 composites were investigated via optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectrometry(EDS),and transmission electron microscopy(TEM).The experimental consequences reveal that the optimal addition of Al_(2)O_(3p) was 2 wt%.After hot extrusion,the Mg(Zn,Cu,Al)2 phases partially dissolve into the matrix and generate many uniformly distributed aging precipitation particles,the Al_(7)Cu_(2)Fe phases are squeezed and broken,and the Al_(2)O_(3p) become uniform distribution.The microhardness of as-extruded 2 wt%Al_(2)O_(3p)/7075 composites reaches HV 170.34,increased by 41.5%than as-cast composites.The wear rate of as-extruded 2 wt%Al_(2)O_(3p)/7075 composites is further lower than that of as-cast composites under the same condition.SEM-EDS analyses reveal that the reinforced wear resistance of composites can put down to the protective effect of the Al_(2)O_(3p) reinforced transition layer.After hot extrusion,the transition layer becomes stable,which determines the reinforced wear resistance of the as-extruded composites.展开更多
The microstructural characteristic of 1070AI matrix composites reinforced by 0.15 祄 AI2O3 particles whose volume fraction was 40% was investigated by TEM and HREM. The results showed that the interface between the ma...The microstructural characteristic of 1070AI matrix composites reinforced by 0.15 祄 AI2O3 particles whose volume fraction was 40% was investigated by TEM and HREM. The results showed that the interface between the matrix and reinforcements was clean and bonded well, without any interfacial reaction products. There were some preferential crystallographic orientation relationships between Al matrix and AI2O3 particle because of the lattice imperfection on the surface of Al2O3 particles.展开更多
The interaction between Zn-AI eutectic alloy and Al203p/6061AI composites in the vacuum furnace was investigated. Great attention has been paid to the elements diffusion, the microstructure and formation of the interf...The interaction between Zn-AI eutectic alloy and Al203p/6061AI composites in the vacuum furnace was investigated. Great attention has been paid to the elements diffusion, the microstructure and formation of the interface between Zn-AI eutectic alloy and Al2O3p/6061AI composites. Experimental results show that Zn-AI eutectic alloy has a good wetting ability to Al2O3p/6061 Al composites and the wetting angle decreases with increasing the temperature in vacuum. After the interaction, an interaction layer forms between Zn-AI alloy and Al2O3p/6061 Al composites. The phases in the interaction layer mainly consist of α-AI(Zn), Al2O3 and CuZn5 resulted from the diffusion of elements from the Zn-AI alloy. Several porosities distribute in the region near the interface of the Zn-AI alloy/interaction layer. The amount of shrinkage voids in the interacting layer is relevant to the penetration of Zn element into Al2O3p/6061Al composites which is a function of temperature. So it is necessary to lower heating temperature in order to limit the Zn penetration.展开更多
Al 2O 3 p /ZA22 composites were fabricated with high intensity ultrasonic treatment. The minimum diameter of reinforcement used is 0.5 μm. The microstructure and mechanical properties were studied. The result...Al 2O 3 p /ZA22 composites were fabricated with high intensity ultrasonic treatment. The minimum diameter of reinforcement used is 0.5 μm. The microstructure and mechanical properties were studied. The results show that particles disperse homogeneously with good particle/matrix interface bonding and the mechanical properties depend on the volume fraction rather than the size of reinforcement.展开更多
TiB2-Al2O3 composite powders were produced by self-propagating high-temperature synthesis(SHS) method with reductive process from B2O3-TiO2-AI system. X-ray diffraction(XRD) and scanning electron microscopy(SEM...TiB2-Al2O3 composite powders were produced by self-propagating high-temperature synthesis(SHS) method with reductive process from B2O3-TiO2-AI system. X-ray diffraction(XRD) and scanning electron microscopy(SEM) analyses show the presence of TiB2 and Al2O3 only in the composite powders produced by SHS. The powders are uniform and free-agglomerate. Transmission electron microscopy (TEM) and high resolution electron microscopy (HREM) observation of microstructure of the composite powders indicate that the interfaces of the TiB2-Al2O3 bond well, without any interfacial reaction products. It is proposed that the good interfacial bonding of the composite powders can be resulted from the TiB2 particles crystallizing and growing on the Al2O3 particles surface with surface defects acting as nucleation centers.展开更多
Mechanical properties were tested for in situ TiB2/A357 composite fabricated by LSM (mixed salts reaction) method. Micro structures of as cast and plastic deformed TiB2/A357 were investigated. The results show that th...Mechanical properties were tested for in situ TiB2/A357 composite fabricated by LSM (mixed salts reaction) method. Micro structures of as cast and plastic deformed TiB2/A357 were investigated. The results show that there is a low misfit between (200) Al and (101)TiB2 with [011]//Al [101]TiB2. There is a change from fully dendritic structure of the α-Al of A357 to a rosette-type structure of TiB2/A357. Significant increases in proof stress and Young's modulus can be obtained at low TiB2 additions. There exist dislocation loops around neighboring TiB2 particles with about 0.1μm in diameter and dislocation multiplication near TiB2 particles.展开更多
Al2O3p/Al composite coatings were prepared on the surface of AZ31 magnesium alloy by plasma spraying technology with mixed powders of Al and Al2O3. An orthogonal test containing six factors and five levels was carried...Al2O3p/Al composite coatings were prepared on the surface of AZ31 magnesium alloy by plasma spraying technology with mixed powders of Al and Al2O3. An orthogonal test containing six factors and five levels was carried out to acquire the optimum technical parameters. Mierostruetures and properties of the composite coatings were studied. The results show that the coatings consist of Al2O3 particulates distributed uniformly and Al matrix, and the interface between the particulate and matrix is continuous, compact and clean. With increasing the mass fraction of Al2O3 in the mixed powders, the volume fraction of Al2O3 in the coatings iacreases. The Al2O3p/Al composite coating with 14% Al2O3 volume fraction has more compact microstrueture and more satisfactory properties.展开更多
The superplasticity of an Al203p/6061Al composite, fabricated by powder metallurgy techniques, has been investigated. Instead of any special thermomechanical processing or hot rolling, simple ...The superplasticity of an Al203p/6061Al composite, fabricated by powder metallurgy techniques, has been investigated. Instead of any special thermomechanical processing or hot rolling, simple hot extrusion has been employed to obtain a fine grained structure before superplastic testing. Superplastic tensile tests were performed at strain rates ranging from 10-2 to 10-4 s-1 and at temperatures from 833 to 893 K. A maximum elongation of 200% was achieved at a temperature of 853 K and an initial strain rate of 1.67×103 s-1. The highest value obtained for the strain rate sensitivity index (in) was 0.32. Differential scanning calorimeter was used to ascertain the possibility of any partial melting in the vicinity of optimum superplastic temperature. These results suggested that no liquid phase existed where maximum elongation was achieved and deformation took place entirely in the solid state.展开更多
An aluminum alloy (6061) matrix composite reinforced with 35% (vol.) Al 2O 3 particles was fabricated by squeeze casting method. The Al 2O 3 particles were spherical. The microyield behavior of the composite and t...An aluminum alloy (6061) matrix composite reinforced with 35% (vol.) Al 2O 3 particles was fabricated by squeeze casting method. The Al 2O 3 particles were spherical. The microyield behavior of the composite and the effect of different thermal cycling treatment on the microyield behaviors of the composite were studied. Based on TEM and HREM observation of microstructure, the mechanism of microyield behavior in the Al 2O 3p/6061 composite was analyzed. The results indicate that the microyield behavior of the Al 2O 3p/6061 composite can be described by Brown Lukens theory, which was used satisfactorily for aluminum alloys and other light alloys, and is affected greatly by the different thermal cycling treatment. The more the cycles of thermal cycling treatment, the higher to microyield strength at small strains. Thermal cycling treatment affects mainly the thermal mismatch stress and the density of movable dislocations in the matrix.展开更多
基金Project(51272141)supported by the National Natural Science Foundation of ChinaProject(ts20110828)supported by the Taishan Scholars Project of Shandong Province,ChinaProject(2015AA034404)supported by the Ministry of Science and Technology of China
文摘(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with the TiB2+Al2O3 content in the NiAl matrix. TiB2 particles take a great variety of elementary shapes such as white bars, plates, herringbones, regular cubes and cuboids. These results outline a strategy of self-assembly processes in real time to build diversified microstructures. Some TiB2 grains in sizes of 2-5μm are embeded in Al2O3 clusters, while a small number of TiB2 particles disperse in the NiAl matrix. It is believed that the higher the TiB2+Al2O3 content is, the more the regular shapes and homogeneous distributions of TiB2 and Al2O3 will be present in the NiAl matrix.
文摘A novel technique for fabricating TiB_2/Al composites in molten aluminum was introduced. The formation mechanism of brittleAl,Ti particulates up to 30 m in size produced in the composites was studied and a method of eliminating them was proposed. The resultsshow that (l) the brittle Al,Ti particulates are always present in the composites when the molar ratio of Ti to B 'T,:nB is l:2; and (2) theformation of the brittle Al,Ti phase can be avoided entirely from the final product by using a proper 'T,:nB of l:4 in the Ti-B-Al preforms.In the former case, the tensile elongation of the composite is only 4%, much lower than the value of pure aluminum (20%). In the latercase, the tensile elongation of this composite is 10%, higher than the value of the composite with a lot ofAl,Ti (4%), whereas the ultimatetensile stfength of the former is nearly that of the later.
基金Project (2008AA03A239) supported by the High-tech Research and Development Program of China
文摘In-situ TiB2 particles reinforced 2014 aluminum alloy composite was prepared using an exothermic reaction process with K2TiF6 and KBF4 salts. The effects of CeO2 additive on the microstructure and properties of in-situ TiB2/2014 composite were investigated. The results showed that CeO2 at high temperature exhibits the same function as Ce. When 0.5% (mass fraction) CeO2 additive was added, the dispersion of TiB2 particles in the matrix is improved significantly, and particles have no obvious settlement. The dispersing mechanism of TiB2 particles in 2014 Al alloy matrix was explained. Compared with the composite without CeO2, the hardness, tensile strength, yield strength and elongation of the composite with CeO2 addition are greatly increased in as-cast condition.
基金Project(NCET-07-0234) supported by Program for New Century Excellent Talents in UniversityProject(20060400813) supported by China Postdoctoral Science Foundation
文摘14% and 20% (volume fraction) TiB2p/6061Al composites were fabricated by pressure infiltration method, and then were extruded. The microstructure and properties of TiB2p/Al composites before and after extrusion were studied by TEM, SEM and tensile method. The results show that TiB2 particles employed are equiaxed polyhedrals and are well wetted with the aluminum alloy. Hot extruding is effective in eliminating defects such as pores, which are induced in the fabrication process. After T6 treatment and extrusion treatment, elastic modulus, tensile strength and elongation of 14%TiB2p/6061Al composites are 107 GPa, 364.1 MPa and 9.25%, respectively. While those of 20%TiB2p/6061Al composites are 120 GPa, 472.6 MPa and 9.79%, respectively, which show high strength and plasticity. A lot of dimples and a few cracked particles are observed on the fracture surfaces of the composites, which indicates good plasticity of the composites. The high strength and plasticity of TiB2p/6061Al composites are attributed to good bonding between TiB2 particles and aluminum alloy.
文摘Ceramic tapes, containing Al2O3-25 wt pct TiB2(B) and Al2O3-25 wt pct nano-TiC (c), have been obtained by tape casting process. Numerous tapes (about 60~80 tapes) were prepared by stacking in turn the composition (B) and (C), laminating under 10 MPa pressure, eliminating the solvent and burning out the polymer additives. The final green bodies were hot pressed at 1750℃ and 30 MPa. The composite has a bending strength of 568 MPa and a fracture toughness of 5.8 M Pa·m1/2. SEM analysis exhibits that Al2O3 particle growth was inhibited by TiC particles in C. but TiB2 particles could not hinder Al2O3 growth in B. The curves of GTA indicates that all organic additives could be removed completely above 600℃
基金Project(51965040)supported by the National Natural Science Foundation of ChinaProject(20181BAB206026)supported by the National Science Foundation of Jiangxi Province,China。
文摘The effects of hot extrusion and addition of Al_(2)O_(3p) on both microstructure and tribological behavior of 7075 composites were investigated via optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectrometry(EDS),and transmission electron microscopy(TEM).The experimental consequences reveal that the optimal addition of Al_(2)O_(3p) was 2 wt%.After hot extrusion,the Mg(Zn,Cu,Al)2 phases partially dissolve into the matrix and generate many uniformly distributed aging precipitation particles,the Al_(7)Cu_(2)Fe phases are squeezed and broken,and the Al_(2)O_(3p) become uniform distribution.The microhardness of as-extruded 2 wt%Al_(2)O_(3p)/7075 composites reaches HV 170.34,increased by 41.5%than as-cast composites.The wear rate of as-extruded 2 wt%Al_(2)O_(3p)/7075 composites is further lower than that of as-cast composites under the same condition.SEM-EDS analyses reveal that the reinforced wear resistance of composites can put down to the protective effect of the Al_(2)O_(3p) reinforced transition layer.After hot extrusion,the transition layer becomes stable,which determines the reinforced wear resistance of the as-extruded composites.
基金This research is supported by the National Natural Science Foundation of China (under Grant No.59771014 and No.50071019). The help of the National Advanced Material Open Research Lab of Tsinghua University is gratefully acknowledged.
文摘The microstructural characteristic of 1070AI matrix composites reinforced by 0.15 祄 AI2O3 particles whose volume fraction was 40% was investigated by TEM and HREM. The results showed that the interface between the matrix and reinforcements was clean and bonded well, without any interfacial reaction products. There were some preferential crystallographic orientation relationships between Al matrix and AI2O3 particle because of the lattice imperfection on the surface of Al2O3 particles.
文摘The interaction between Zn-AI eutectic alloy and Al203p/6061AI composites in the vacuum furnace was investigated. Great attention has been paid to the elements diffusion, the microstructure and formation of the interface between Zn-AI eutectic alloy and Al2O3p/6061AI composites. Experimental results show that Zn-AI eutectic alloy has a good wetting ability to Al2O3p/6061 Al composites and the wetting angle decreases with increasing the temperature in vacuum. After the interaction, an interaction layer forms between Zn-AI alloy and Al2O3p/6061 Al composites. The phases in the interaction layer mainly consist of α-AI(Zn), Al2O3 and CuZn5 resulted from the diffusion of elements from the Zn-AI alloy. Several porosities distribute in the region near the interface of the Zn-AI alloy/interaction layer. The amount of shrinkage voids in the interacting layer is relevant to the penetration of Zn element into Al2O3p/6061Al composites which is a function of temperature. So it is necessary to lower heating temperature in order to limit the Zn penetration.
文摘Al 2O 3 p /ZA22 composites were fabricated with high intensity ultrasonic treatment. The minimum diameter of reinforcement used is 0.5 μm. The microstructure and mechanical properties were studied. The results show that particles disperse homogeneously with good particle/matrix interface bonding and the mechanical properties depend on the volume fraction rather than the size of reinforcement.
文摘TiB2-Al2O3 composite powders were produced by self-propagating high-temperature synthesis(SHS) method with reductive process from B2O3-TiO2-AI system. X-ray diffraction(XRD) and scanning electron microscopy(SEM) analyses show the presence of TiB2 and Al2O3 only in the composite powders produced by SHS. The powders are uniform and free-agglomerate. Transmission electron microscopy (TEM) and high resolution electron microscopy (HREM) observation of microstructure of the composite powders indicate that the interfaces of the TiB2-Al2O3 bond well, without any interfacial reaction products. It is proposed that the good interfacial bonding of the composite powders can be resulted from the TiB2 particles crystallizing and growing on the Al2O3 particles surface with surface defects acting as nucleation centers.
文摘Mechanical properties were tested for in situ TiB2/A357 composite fabricated by LSM (mixed salts reaction) method. Micro structures of as cast and plastic deformed TiB2/A357 were investigated. The results show that there is a low misfit between (200) Al and (101)TiB2 with [011]//Al [101]TiB2. There is a change from fully dendritic structure of the α-Al of A357 to a rosette-type structure of TiB2/A357. Significant increases in proof stress and Young's modulus can be obtained at low TiB2 additions. There exist dislocation loops around neighboring TiB2 particles with about 0.1μm in diameter and dislocation multiplication near TiB2 particles.
基金This research was supported by Jilin Province Science Foundation (No. 20090552).
文摘Al2O3p/Al composite coatings were prepared on the surface of AZ31 magnesium alloy by plasma spraying technology with mixed powders of Al and Al2O3. An orthogonal test containing six factors and five levels was carried out to acquire the optimum technical parameters. Mierostruetures and properties of the composite coatings were studied. The results show that the coatings consist of Al2O3 particulates distributed uniformly and Al matrix, and the interface between the particulate and matrix is continuous, compact and clean. With increasing the mass fraction of Al2O3 in the mixed powders, the volume fraction of Al2O3 in the coatings iacreases. The Al2O3p/Al composite coating with 14% Al2O3 volume fraction has more compact microstrueture and more satisfactory properties.
基金This work was supported by the National Natural Science Foundation of China,under grant No.59781004.
文摘The superplasticity of an Al203p/6061Al composite, fabricated by powder metallurgy techniques, has been investigated. Instead of any special thermomechanical processing or hot rolling, simple hot extrusion has been employed to obtain a fine grained structure before superplastic testing. Superplastic tensile tests were performed at strain rates ranging from 10-2 to 10-4 s-1 and at temperatures from 833 to 893 K. A maximum elongation of 200% was achieved at a temperature of 853 K and an initial strain rate of 1.67×103 s-1. The highest value obtained for the strain rate sensitivity index (in) was 0.32. Differential scanning calorimeter was used to ascertain the possibility of any partial melting in the vicinity of optimum superplastic temperature. These results suggested that no liquid phase existed where maximum elongation was achieved and deformation took place entirely in the solid state.
文摘An aluminum alloy (6061) matrix composite reinforced with 35% (vol.) Al 2O 3 particles was fabricated by squeeze casting method. The Al 2O 3 particles were spherical. The microyield behavior of the composite and the effect of different thermal cycling treatment on the microyield behaviors of the composite were studied. Based on TEM and HREM observation of microstructure, the mechanism of microyield behavior in the Al 2O 3p/6061 composite was analyzed. The results indicate that the microyield behavior of the Al 2O 3p/6061 composite can be described by Brown Lukens theory, which was used satisfactorily for aluminum alloys and other light alloys, and is affected greatly by the different thermal cycling treatment. The more the cycles of thermal cycling treatment, the higher to microyield strength at small strains. Thermal cycling treatment affects mainly the thermal mismatch stress and the density of movable dislocations in the matrix.