The effect of the sintering atmospheres (vacuum, N_2, Ar) on the microstructures and properties of the TiC based cermets was studied using XRD, SEM/BSE and energy dispersive spectrometer. Compared with the alloy sinte...The effect of the sintering atmospheres (vacuum, N_2, Ar) on the microstructures and properties of the TiC based cermets was studied using XRD, SEM/BSE and energy dispersive spectrometer. Compared with the alloy sintered in vacuum, the carbon content of the specimen sintered in N_2 and Ar is lower by 0.5%; and the nitrogen content is higher by 0.3% when sintered in nitrogen. The central part of the ring structure may be carbide with either a high W or Ti content. The ring structures are (Ti, W, Ta, Mo, Co, Ni)C solid solutions with different metallic elements and distributions. The composition of the binder phase is (Co, Ni) solid solution with different Ti, W, Ta, Mo, C contents. The structures are uniform for the cermets sintered in vacuum and the properties are the best. When sintered in Ar or N2, the O_2 and N2 in the atmosphere take part in the sintering reaction to break the carbon balance in the cermets to form a shell structure and defects, which results in poor density, microhardness (HV) and transverse rupture strength (TRS).展开更多
The effect of rare earth (RE) oxide on the microstructure and properties of TiC based cermet/Cu alloy composite hardfacing materials was investigated by using scanning electron microscope (SEM), transmission electron...The effect of rare earth (RE) oxide on the microstructure and properties of TiC based cermet/Cu alloy composite hardfacing materials was investigated by using scanning electron microscope (SEM), transmission electron microscope (TEM), impact test and wear test. The mechanism of RE oxide for improving the phase structure and the impact toughness was also discussed. The experimental results indicate that the microstructure of the matrix can be refined, and the micro-porous defects can be eliminated by adding RE oxide into the composite materials. The polycrystalline and amorphous phase structure is formed at the interface of cermet and matrix metal. The formed structure enhances the conjoint strength of interface. The frictional wear resistance can be improved obviously, although the microhardness of the matrix metal can not be effectively increased by adding RE oxide.展开更多
基金Foundation item: Project(2002AA331090) supported by the Hi-tech Research and Development Program of China Project(06D073) supported by Scientific Research Fund of Education Department of Hunan Province
文摘The effect of the sintering atmospheres (vacuum, N_2, Ar) on the microstructures and properties of the TiC based cermets was studied using XRD, SEM/BSE and energy dispersive spectrometer. Compared with the alloy sintered in vacuum, the carbon content of the specimen sintered in N_2 and Ar is lower by 0.5%; and the nitrogen content is higher by 0.3% when sintered in nitrogen. The central part of the ring structure may be carbide with either a high W or Ti content. The ring structures are (Ti, W, Ta, Mo, Co, Ni)C solid solutions with different metallic elements and distributions. The composition of the binder phase is (Co, Ni) solid solution with different Ti, W, Ta, Mo, C contents. The structures are uniform for the cermets sintered in vacuum and the properties are the best. When sintered in Ar or N2, the O_2 and N2 in the atmosphere take part in the sintering reaction to break the carbon balance in the cermets to form a shell structure and defects, which results in poor density, microhardness (HV) and transverse rupture strength (TRS).
文摘The effect of rare earth (RE) oxide on the microstructure and properties of TiC based cermet/Cu alloy composite hardfacing materials was investigated by using scanning electron microscope (SEM), transmission electron microscope (TEM), impact test and wear test. The mechanism of RE oxide for improving the phase structure and the impact toughness was also discussed. The experimental results indicate that the microstructure of the matrix can be refined, and the micro-porous defects can be eliminated by adding RE oxide into the composite materials. The polycrystalline and amorphous phase structure is formed at the interface of cermet and matrix metal. The formed structure enhances the conjoint strength of interface. The frictional wear resistance can be improved obviously, although the microhardness of the matrix metal can not be effectively increased by adding RE oxide.