Two-dimensional(2D)transition metal carbide MXene-based materials hold great potentials applied for new electromagnetic wave(EMW)absorbers.However,the application of MXenes in the field of electromagnetic wave absorpt...Two-dimensional(2D)transition metal carbide MXene-based materials hold great potentials applied for new electromagnetic wave(EMW)absorbers.However,the application of MXenes in the field of electromagnetic wave absorption(EMA)is limited by the disadvantages of poor impedance matching,single loss mechanism,and easy oxidation.In this work,MoO_(3)/TiO_(2)/Mo_(2)TiC_(2)T_(x)hybrids were prepared by the annealing-treated Mo_(2)TiC_(2)T_(x)MXene and uniform MoO_(3)and TiO_(2)oxides in-situ grew on Mo_(2)TiC_(2)T_(x)layers.At the annealing temperature of 300℃,the minimum reflection loss(RLmin)value of MoO_(3)/TiO_(2)/Mo_(2)TiC_(2)T_(x)reaches-30.76 dB(2.3 mm)at 10.18 GHz with a significantly broadening effective absorption bandwidth(EAB)of 8.6 GHz(1.8 mm).The in-situ generated oxides creating numerous defects and heterogeneous interfaces enhance dipolar and interfacial polarizations and optimize the impedance matching of Mo_(2)TiC_(2)T_(x).Considering the excellent overall performance,the MoO_(3)/TiO_(2)/Mo_(2)TiC_(2)T_(x)hybrids can be a promising candidate for EMA.展开更多
基金The paper was financially supported by the National Natural Science Foundation of China (No. 50741003), Anhui Provincial Natural Science Foundation (No, 070414181) and key project of Science and Technology of Ministry of Education of China (No. 107066).
基金This work was financially supported by the National Natural Science Foundation of China(Nos.U2004177 and U21A2064)Outstanding Youth Fund of Henan Province(No.212300410081)Support Plan for Scientific and Technological Innovation Talents in Colleges and Universities of Henan Province(No.22HASTIT001)。
文摘Two-dimensional(2D)transition metal carbide MXene-based materials hold great potentials applied for new electromagnetic wave(EMW)absorbers.However,the application of MXenes in the field of electromagnetic wave absorption(EMA)is limited by the disadvantages of poor impedance matching,single loss mechanism,and easy oxidation.In this work,MoO_(3)/TiO_(2)/Mo_(2)TiC_(2)T_(x)hybrids were prepared by the annealing-treated Mo_(2)TiC_(2)T_(x)MXene and uniform MoO_(3)and TiO_(2)oxides in-situ grew on Mo_(2)TiC_(2)T_(x)layers.At the annealing temperature of 300℃,the minimum reflection loss(RLmin)value of MoO_(3)/TiO_(2)/Mo_(2)TiC_(2)T_(x)reaches-30.76 dB(2.3 mm)at 10.18 GHz with a significantly broadening effective absorption bandwidth(EAB)of 8.6 GHz(1.8 mm).The in-situ generated oxides creating numerous defects and heterogeneous interfaces enhance dipolar and interfacial polarizations and optimize the impedance matching of Mo_(2)TiC_(2)T_(x).Considering the excellent overall performance,the MoO_(3)/TiO_(2)/Mo_(2)TiC_(2)T_(x)hybrids can be a promising candidate for EMA.