The vicinal dibromides of α,β-unsaturated carboxylic acid derivatives were debrominated with Sm/TiCl4 system to afford the corresponding cinnamic acid derivatives in good yields under mild conditions.
Cationic polymerizations of 1,3-pentadiene (PD) initiated by trimethylsilyl chloride (TMSCl) incombination with TiCl_4 were carried out in n-hexane at 30℃. The yield of polymer was greatly increased bythe addition of...Cationic polymerizations of 1,3-pentadiene (PD) initiated by trimethylsilyl chloride (TMSCl) incombination with TiCl_4 were carried out in n-hexane at 30℃. The yield of polymer was greatly increased bythe addition of TMSCl, indicating that the TMSCl/TiCl_4 combination is an efficient initiating system for PDcationic polymerization. However, the introduction of TMSCl gave rise to a drop in the molecular weight ofthe polymer. Kinetic results demonstrated that the polymerization initiated by TMSCl/TiCl_4 is 4.5 times fasterthan that induced by TiCl_4 alone. Various ethers were used to mediate the TMSCl/TiCl_4 initiating system.Adding diphenyl ether could increase both the yield and molecular weight of the polymer. Structural evidenceillustrates that the polymerization is indeed initiated by TiCl_4 in combination with HCl resulting fromhydrolysis by adventitious water.展开更多
Diimine)nickel {[C 6 H 5 -N = C(CH 3 ) - C(CH 3 ) = N - QH 5 ]NiBr 2 }-TiCl 4 , abbreviated as NiL-TiCl 4 combined catalyst which is supported on MgCl 2 -SiO 2 carrier has been prepared, by using alkyl aluminum (AlR 3...Diimine)nickel {[C 6 H 5 -N = C(CH 3 ) - C(CH 3 ) = N - QH 5 ]NiBr 2 }-TiCl 4 , abbreviated as NiL-TiCl 4 combined catalyst which is supported on MgCl 2 -SiO 2 carrier has been prepared, by using alkyl aluminum (AlR 3 ) as the cocatalyst in place of methylaluminoxane (MAO) to catalyze ethylene oligomerization and copolymerization in situ. The influences of procedure for supporting NiL-TiCl 4 , the molar ratio of NiL to TiCl 4 , cocatalyst type and polymerization temperature on the catalytic performance were studied. The degree of branching and the composition of the branched chain of polymers produced have been investigated by IR and 13C-NMR spectra. The results show that the combined catalyst can synthesize the branched polyethylene with various banched chains .The polymerization reaction was monitored by gas chromatography and mass spectrometry (GC-MS). The results show that this catalyst promotes the oligomerization and copolymerization in situ for ethylene.展开更多
文摘The vicinal dibromides of α,β-unsaturated carboxylic acid derivatives were debrominated with Sm/TiCl4 system to afford the corresponding cinnamic acid derivatives in good yields under mild conditions.
基金The National Natural Sciences Foundation of China is gratefully acknowledged for its financial support (grant No. 29504032)
文摘Cationic polymerizations of 1,3-pentadiene (PD) initiated by trimethylsilyl chloride (TMSCl) incombination with TiCl_4 were carried out in n-hexane at 30℃. The yield of polymer was greatly increased bythe addition of TMSCl, indicating that the TMSCl/TiCl_4 combination is an efficient initiating system for PDcationic polymerization. However, the introduction of TMSCl gave rise to a drop in the molecular weight ofthe polymer. Kinetic results demonstrated that the polymerization initiated by TMSCl/TiCl_4 is 4.5 times fasterthan that induced by TiCl_4 alone. Various ethers were used to mediate the TMSCl/TiCl_4 initiating system.Adding diphenyl ether could increase both the yield and molecular weight of the polymer. Structural evidenceillustrates that the polymerization is indeed initiated by TiCl_4 in combination with HCl resulting fromhydrolysis by adventitious water.
基金This project was supported by the National Natural Science Foundation of China (No. 29874039) and the Foundation ofGuangdong Province (No. 031598).
文摘Diimine)nickel {[C 6 H 5 -N = C(CH 3 ) - C(CH 3 ) = N - QH 5 ]NiBr 2 }-TiCl 4 , abbreviated as NiL-TiCl 4 combined catalyst which is supported on MgCl 2 -SiO 2 carrier has been prepared, by using alkyl aluminum (AlR 3 ) as the cocatalyst in place of methylaluminoxane (MAO) to catalyze ethylene oligomerization and copolymerization in situ. The influences of procedure for supporting NiL-TiCl 4 , the molar ratio of NiL to TiCl 4 , cocatalyst type and polymerization temperature on the catalytic performance were studied. The degree of branching and the composition of the branched chain of polymers produced have been investigated by IR and 13C-NMR spectra. The results show that the combined catalyst can synthesize the branched polyethylene with various banched chains .The polymerization reaction was monitored by gas chromatography and mass spectrometry (GC-MS). The results show that this catalyst promotes the oligomerization and copolymerization in situ for ethylene.