High-energy ball milling has a great influence on the temperature characters of synthetic reaction in Al-TiO2-C system by changing the size,distribution state and wet ability of reactants.Reaction temperature charact...High-energy ball milling has a great influence on the temperature characters of synthetic reaction in Al-TiO2-C system by changing the size,distribution state and wet ability of reactants.Reaction temperature characters(reaction ignition time,ignition temperature time.the maximum temperature and temperature rising rate)were changed by different milling time.The longer the milling time.the earlier the reaction.the quicker the temperature rise and the higher the maximum temperature.When the milling time exceeded 10 hours,the reactivity of reactants was so high that the synthetic reaction could take place at 850℃ directly without a long time pretreatment at 670℃.The microstructure of synthetic composites became uniform and the reinforced particles(TiC and α-Al2O3)became fine with milling time increasing.展开更多
An in-situ TiCp/Al composite was prepared by a thermal explosion/quick pressure method (TE/QP). The effect of Al content on the reaction temperature as well as the reaction rate has been studied. Phase constituents ...An in-situ TiCp/Al composite was prepared by a thermal explosion/quick pressure method (TE/QP). The effect of Al content on the reaction temperature as well as the reaction rate has been studied. Phase constituents and the microstructure of the composites and the particle size of the reinforcement were analysed using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results have shown that TiCp/Al composite with 40~70 vol. pct TiC particle reinforcement and high relative density can be directly obtained by TE/QP. TiC is the only reaction product when Al content in Al-Ti-C system is no more than 60 vol. pct, but Al3Ti phase will also form when Al content is more than 60 vol. pct. Increasing Al content prolongs the initial reaction time, reduces the highest reaction temperature and the reaction rate, and decreases the size of TiC particles. In addition, the microstructure of TiCp/Al composite and the structure of interface between TiCp and Al are studied using SEM and transmission electron microscopy (TEM). The results show that the in-situ synthesized TiC particle has fcc cubic structure. The orientation between TiC particles and Al matrix can be described as (220)Al//(022)TiC and [112]Al//[011]TiC. Results of the mechanical property tests reveal that the ultimate strength (σ) and modulus (E) are 687 MPa and 142 GPa respectively when the Al content is 40 vol. pct. On contrary, 6 elongation increases by 3.2% with increasing Al content.展开更多
Direct reaction synthesis (DRS), based on the principle of self-propagating high-temperature synthesis (SHS), is a new method for preparing participate metal matrix composites. TiCP/AI-4.5Cu-0.8Mg composites were fabr...Direct reaction synthesis (DRS), based on the principle of self-propagating high-temperature synthesis (SHS), is a new method for preparing participate metal matrix composites. TiCP/AI-4.5Cu-0.8Mg composites were fabricated by DRS. Participate composites were fabricated with Ti carbide (TiC) particles, generally less than 1.0μm. The reacted, thermal extruded samples exhibit a homogeneous distribution of fine TiC particles in AI-4.5Cu-0.8Mg matrix. Mechanical property evaluation of the composites has revealed a very high tensile strength relative to the matrix alloy. Fractographic analysis indicates ductile failure.展开更多
文摘High-energy ball milling has a great influence on the temperature characters of synthetic reaction in Al-TiO2-C system by changing the size,distribution state and wet ability of reactants.Reaction temperature characters(reaction ignition time,ignition temperature time.the maximum temperature and temperature rising rate)were changed by different milling time.The longer the milling time.the earlier the reaction.the quicker the temperature rise and the higher the maximum temperature.When the milling time exceeded 10 hours,the reactivity of reactants was so high that the synthetic reaction could take place at 850℃ directly without a long time pretreatment at 670℃.The microstructure of synthetic composites became uniform and the reinforced particles(TiC and α-Al2O3)became fine with milling time increasing.
文摘An in-situ TiCp/Al composite was prepared by a thermal explosion/quick pressure method (TE/QP). The effect of Al content on the reaction temperature as well as the reaction rate has been studied. Phase constituents and the microstructure of the composites and the particle size of the reinforcement were analysed using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results have shown that TiCp/Al composite with 40~70 vol. pct TiC particle reinforcement and high relative density can be directly obtained by TE/QP. TiC is the only reaction product when Al content in Al-Ti-C system is no more than 60 vol. pct, but Al3Ti phase will also form when Al content is more than 60 vol. pct. Increasing Al content prolongs the initial reaction time, reduces the highest reaction temperature and the reaction rate, and decreases the size of TiC particles. In addition, the microstructure of TiCp/Al composite and the structure of interface between TiCp and Al are studied using SEM and transmission electron microscopy (TEM). The results show that the in-situ synthesized TiC particle has fcc cubic structure. The orientation between TiC particles and Al matrix can be described as (220)Al//(022)TiC and [112]Al//[011]TiC. Results of the mechanical property tests reveal that the ultimate strength (σ) and modulus (E) are 687 MPa and 142 GPa respectively when the Al content is 40 vol. pct. On contrary, 6 elongation increases by 3.2% with increasing Al content.
文摘Direct reaction synthesis (DRS), based on the principle of self-propagating high-temperature synthesis (SHS), is a new method for preparing participate metal matrix composites. TiCP/AI-4.5Cu-0.8Mg composites were fabricated by DRS. Participate composites were fabricated with Ti carbide (TiC) particles, generally less than 1.0μm. The reacted, thermal extruded samples exhibit a homogeneous distribution of fine TiC particles in AI-4.5Cu-0.8Mg matrix. Mechanical property evaluation of the composites has revealed a very high tensile strength relative to the matrix alloy. Fractographic analysis indicates ductile failure.