Titanium hydride(TiH_(2)), a promising high-energy additive, is doped into PTFE/Al to optimize the energy output structure of the reactive jet and strive for better aftereffect damage ability to the target. Six types ...Titanium hydride(TiH_(2)), a promising high-energy additive, is doped into PTFE/Al to optimize the energy output structure of the reactive jet and strive for better aftereffect damage ability to the target. Six types of PTFE/Al/TiH_(2) reactive liners with different TiH_(2) content are prepared by the molding and sintering method. The energy release characteristics of PTFE/Al/TiH_(2) reactive jet are tested by the transient explosion energy test, and are characterized from pressure and temperature. The reaction delay time,pressure history, and temperature history of the energy release process are obtained, then the actual value of released energy and reaction efficiency of the reactive jet are calculated. The results show that the peak pressure and temperature of the PTFE/Al/TiH_(2) jet initially increase and then decrease with increasing TiH_(2) content. When the TiH_(2) content is 10%, the actual value of released energy and reaction efficiency increased by 24% and 6.4%, respectively, compared to the PTFE/Al jet. The reaction duration of the reactive material is significantly prolonged as the TiH_(2) content increased from 0% to 30%. Finally,combined with the energy release behaviors of PAT material and the dynamic deformation process of liner, the enhancement mechanism of TiH_(2) on energy release of the reactive jet is expounded.展开更多
The surface of Titanium Hydride (TiH 2) is coated by Nano Titanium Dioxide (TiO 2) particles prepared in both of methods of hydrolysis reaction of Ti(OC 4H 9) 4 and base precipitation reaction of Ti(SO 4) 2. ...The surface of Titanium Hydride (TiH 2) is coated by Nano Titanium Dioxide (TiO 2) particles prepared in both of methods of hydrolysis reaction of Ti(OC 4H 9) 4 and base precipitation reaction of Ti(SO 4) 2. TiH 2 coated with nano TiO 2 particles, in which there is an oxidation film on its surface, shown in the experiments, will obviously achieve good effects on releasing hydrogen slowly in high temperature. There are different structures and properties of TiH 2 coated by nano TiO 2 particles prepared in different ways in high temperature, which can influence on releasing hydrogen.展开更多
In order to clarify that the IFP and the “Type 2”α phase are also arising from TiC,a metastable β-Ti alloy was selected for investigation in this work.The results showed that af- ter heating the alloy just below t...In order to clarify that the IFP and the “Type 2”α phase are also arising from TiC,a metastable β-Ti alloy was selected for investigation in this work.The results showed that af- ter heating the alloy just below the α+β→β transus temperature and quenching,the TiC lay- er existed at the α/β interface.The morphology of TiC is similar to that of the IFP arising from TiH_2 in the α-β two-phase alloys.The IFP TiC also provided an easy crack path or the crack initiation sites.The fracture is also identical to that caused by IFP TiH_2.The arced diffractions(characteristic of “Type 2”α)were found in the selected area diffraction pat- terns of some specimens which had been isothermally aged after solid solution treatment.The particles which bring on the arced diffractions may be TiC on the basis of structure and lat- tice parameter analysis,not the so called “Type 2”α phase.展开更多
Thermal decomposition behaviors of TiH_2 powder under a flowing helium atmosphere and in a low vacuum condition have been studied using an in situ EXAFS technique.By an EXAFS analysis containing the multiple scatterin...Thermal decomposition behaviors of TiH_2 powder under a flowing helium atmosphere and in a low vacuum condition have been studied using an in situ EXAFS technique.By an EXAFS analysis containing the multiple scattering paths including H atoms,the changes of the hydrogen stoichiometric ratio and the phase transformation sequence are obtained.The results demonstrate that the initial decomposition temperature is dependent on experimental conditions,which occurs,respectively,at about 300 and 400℃ in a low vacuum condition and under a flowing helium atmosphere.During the decomposition process of TiH_2 in a low vacuum condition,the sample experiences a phase change process:δ(TiH_2)→δ(TiH_x)→δ(TiH_1)+β(TiH_x)→δ(TiH_x)+β(TiH_x)+α(Ti)→β(TiH_x)+α(Ti)→α(Ti)+β(Ti).This study offers a way to detect the structural information of hydrogen.A detailed discussion about the decomposition process of TiH_2 is given in this paper.展开更多
基金National Natural Science Foundation of China (Grant No. 12002045)State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology (QNKT22-09) to provide fund for conducting experiments。
文摘Titanium hydride(TiH_(2)), a promising high-energy additive, is doped into PTFE/Al to optimize the energy output structure of the reactive jet and strive for better aftereffect damage ability to the target. Six types of PTFE/Al/TiH_(2) reactive liners with different TiH_(2) content are prepared by the molding and sintering method. The energy release characteristics of PTFE/Al/TiH_(2) reactive jet are tested by the transient explosion energy test, and are characterized from pressure and temperature. The reaction delay time,pressure history, and temperature history of the energy release process are obtained, then the actual value of released energy and reaction efficiency of the reactive jet are calculated. The results show that the peak pressure and temperature of the PTFE/Al/TiH_(2) jet initially increase and then decrease with increasing TiH_(2) content. When the TiH_(2) content is 10%, the actual value of released energy and reaction efficiency increased by 24% and 6.4%, respectively, compared to the PTFE/Al jet. The reaction duration of the reactive material is significantly prolonged as the TiH_(2) content increased from 0% to 30%. Finally,combined with the energy release behaviors of PAT material and the dynamic deformation process of liner, the enhancement mechanism of TiH_(2) on energy release of the reactive jet is expounded.
文摘The surface of Titanium Hydride (TiH 2) is coated by Nano Titanium Dioxide (TiO 2) particles prepared in both of methods of hydrolysis reaction of Ti(OC 4H 9) 4 and base precipitation reaction of Ti(SO 4) 2. TiH 2 coated with nano TiO 2 particles, in which there is an oxidation film on its surface, shown in the experiments, will obviously achieve good effects on releasing hydrogen slowly in high temperature. There are different structures and properties of TiH 2 coated by nano TiO 2 particles prepared in different ways in high temperature, which can influence on releasing hydrogen.
文摘In order to clarify that the IFP and the “Type 2”α phase are also arising from TiC,a metastable β-Ti alloy was selected for investigation in this work.The results showed that af- ter heating the alloy just below the α+β→β transus temperature and quenching,the TiC lay- er existed at the α/β interface.The morphology of TiC is similar to that of the IFP arising from TiH_2 in the α-β two-phase alloys.The IFP TiC also provided an easy crack path or the crack initiation sites.The fracture is also identical to that caused by IFP TiH_2.The arced diffractions(characteristic of “Type 2”α)were found in the selected area diffraction pat- terns of some specimens which had been isothermally aged after solid solution treatment.The particles which bring on the arced diffractions may be TiC on the basis of structure and lat- tice parameter analysis,not the so called “Type 2”α phase.
基金Supported by National Natural Science Foundation of China(10875143)
文摘Thermal decomposition behaviors of TiH_2 powder under a flowing helium atmosphere and in a low vacuum condition have been studied using an in situ EXAFS technique.By an EXAFS analysis containing the multiple scattering paths including H atoms,the changes of the hydrogen stoichiometric ratio and the phase transformation sequence are obtained.The results demonstrate that the initial decomposition temperature is dependent on experimental conditions,which occurs,respectively,at about 300 and 400℃ in a low vacuum condition and under a flowing helium atmosphere.During the decomposition process of TiH_2 in a low vacuum condition,the sample experiences a phase change process:δ(TiH_2)→δ(TiH_x)→δ(TiH_1)+β(TiH_x)→δ(TiH_x)+β(TiH_x)+α(Ti)→β(TiH_x)+α(Ti)→α(Ti)+β(Ti).This study offers a way to detect the structural information of hydrogen.A detailed discussion about the decomposition process of TiH_2 is given in this paper.