以四氯化钛为钛源,P123为模板剂,氰胺为稳定剂,采用溶胶-凝胶法制备多孔TiO 2粉体,再经900℃氨气还原氮化得到多孔TiN粉体。通过XRD,SEM,BET,TEM和SAXD等表征粉体物相组成与微观结构,并采用循环伏安法、交流阻抗法和恒流充放电法测试其...以四氯化钛为钛源,P123为模板剂,氰胺为稳定剂,采用溶胶-凝胶法制备多孔TiO 2粉体,再经900℃氨气还原氮化得到多孔TiN粉体。通过XRD,SEM,BET,TEM和SAXD等表征粉体物相组成与微观结构,并采用循环伏安法、交流阻抗法和恒流充放电法测试其电化学性能。结果表明:合成粉体颗粒近似球形,为立方TiN相。相比之下,引入P123时所合成粉体中孔径尺寸为10~50nm的介孔数量增加,并存在孔径大小为2~3nm的微小孔道,同时孔道结构有序性有所提高,这有助于提升TiN粉体的电化学性能。因此,未加入P123合成TiN粉体的比电容仅为81F·g -1 ,内阻 R 1为1.1Ω,离子扩散阻抗 W 1为2.5Ω。引入P123合成TiN粉体的比电容提升到95F·g -1 , R 1和 W 1均有所减小,分别为0.9Ω和0.06Ω。展开更多
文摘以四氯化钛为钛源,P123为模板剂,氰胺为稳定剂,采用溶胶-凝胶法制备多孔TiO 2粉体,再经900℃氨气还原氮化得到多孔TiN粉体。通过XRD,SEM,BET,TEM和SAXD等表征粉体物相组成与微观结构,并采用循环伏安法、交流阻抗法和恒流充放电法测试其电化学性能。结果表明:合成粉体颗粒近似球形,为立方TiN相。相比之下,引入P123时所合成粉体中孔径尺寸为10~50nm的介孔数量增加,并存在孔径大小为2~3nm的微小孔道,同时孔道结构有序性有所提高,这有助于提升TiN粉体的电化学性能。因此,未加入P123合成TiN粉体的比电容仅为81F·g -1 ,内阻 R 1为1.1Ω,离子扩散阻抗 W 1为2.5Ω。引入P123合成TiN粉体的比电容提升到95F·g -1 , R 1和 W 1均有所减小,分别为0.9Ω和0.06Ω。