A TiNi-alloy is solution-treated in a vacuum furnace of 6.7×10^-3 Pa at 1 223 K for 3.6 ks, and then aged at 773 K for 1.8 ks. The differential scanning calorimetry (DSC) measurements show that after the heat-t...A TiNi-alloy is solution-treated in a vacuum furnace of 6.7×10^-3 Pa at 1 223 K for 3.6 ks, and then aged at 773 K for 1.8 ks. The differential scanning calorimetry (DSC) measurements show that after the heat-treatment, takes place a two-step reverse Martensitic transformation, from which results the two-stage recovery strain in a prestrained Martensitic TiNi-alloy wire during heating. The Vickers microhardness indentation test in cross-sectional areas of the TiNi-alloy wire indicates the compositional heterogeneity between its surface layers and its inside. The fact that the sizes of the indentation in surface layers smaller than those in the inside bears witness to the existence of slightly harder surface layers. It is believed that these phenomena are related to the compositional fluctuation caused by the evaporation and oxidization of Ti-element during the solution-treatment and heterogeneity formed during the subsequent aging treatment.展开更多
Thin film of Ti-Ni alloy has a potential to perform the microactuation functions required in the microelectromechanical system (MEMS). It is essential, however, to have good uniformity in both chemical composition and...Thin film of Ti-Ni alloy has a potential to perform the microactuation functions required in the microelectromechanical system (MEMS). It is essential, however, to have good uniformity in both chemical composition and thickness to realize its full potential as an active component of MEMS devices. Electron beam evaporation technique was employed in this study to fabricate the thin films of Ti-Ni alloy on different substrates. The targets used for the evaporation were first prepared by electron beam melting. The uniformity of composition and microstructure of the thin films were characterized by electron probe microanalysis (EPMA), Auger electron spectroscopy (AES), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM). The mechanical property of the thin films was evaluated by the nano-indentation test. The martensitic transformation temperature was measured by differential scanning calorimetry (DSC). It is confirmed that the chemical composition of deposited thin films is identical to that of the target materials. Furthermore, results from depth profiling of the chemical composition variation reveal that the electron beam evaporation process yields better compositional homogeneity than other conventional methods such as sputtering and thermal evaporation. Microstructural observation by TEM shows that nanometer size precipitates are preferentially distributed along the grain boundaries of a few micron size grains. The hardness and elastic modulus of thin films decreases with an increase in Ti contents.展开更多
基金National Natural Science Foundation of China (50471021)Beijing Municipal Program of Education Committee.
文摘A TiNi-alloy is solution-treated in a vacuum furnace of 6.7×10^-3 Pa at 1 223 K for 3.6 ks, and then aged at 773 K for 1.8 ks. The differential scanning calorimetry (DSC) measurements show that after the heat-treatment, takes place a two-step reverse Martensitic transformation, from which results the two-stage recovery strain in a prestrained Martensitic TiNi-alloy wire during heating. The Vickers microhardness indentation test in cross-sectional areas of the TiNi-alloy wire indicates the compositional heterogeneity between its surface layers and its inside. The fact that the sizes of the indentation in surface layers smaller than those in the inside bears witness to the existence of slightly harder surface layers. It is believed that these phenomena are related to the compositional fluctuation caused by the evaporation and oxidization of Ti-element during the solution-treatment and heterogeneity formed during the subsequent aging treatment.
文摘Thin film of Ti-Ni alloy has a potential to perform the microactuation functions required in the microelectromechanical system (MEMS). It is essential, however, to have good uniformity in both chemical composition and thickness to realize its full potential as an active component of MEMS devices. Electron beam evaporation technique was employed in this study to fabricate the thin films of Ti-Ni alloy on different substrates. The targets used for the evaporation were first prepared by electron beam melting. The uniformity of composition and microstructure of the thin films were characterized by electron probe microanalysis (EPMA), Auger electron spectroscopy (AES), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM). The mechanical property of the thin films was evaluated by the nano-indentation test. The martensitic transformation temperature was measured by differential scanning calorimetry (DSC). It is confirmed that the chemical composition of deposited thin films is identical to that of the target materials. Furthermore, results from depth profiling of the chemical composition variation reveal that the electron beam evaporation process yields better compositional homogeneity than other conventional methods such as sputtering and thermal evaporation. Microstructural observation by TEM shows that nanometer size precipitates are preferentially distributed along the grain boundaries of a few micron size grains. The hardness and elastic modulus of thin films decreases with an increase in Ti contents.
基金National Basic Research Program of China (“973” Program) (2009CB724404)The Foundation of State Key Laboratory of Solid Lubrication,Chinese Academy of Sciences (0707)
文摘采用模压法在 TiNi 合金表面获得了微凹坑织构,通过织构几何参数的变化调控材料的摩擦学性能。结果表明,周向和径向间距增大,TiNi 合金的摩擦系数和比磨损率均呈现先减小后增大的趋势,而深/径比逐渐增大,使得 TiNi 合金的摩擦系数和比磨损率呈现先增大后减小的趋势。滑动速度增加,TiNi 合金试盘的摩擦系数几乎都呈现先减小后增大的趋势,与 Stribeck 曲线描述的一致。织构参数微坑深/径比为 0.06,径向间距为 1.5 mm,周向间距为 15°时,表现出较优的摩擦学性能,摩擦系数为 0.098,比磨损率为 0.87 × 10-5mm3/(N·m)。由此可见,合适的织构参数和形貌可以降低摩擦系数和减小磨损,因为摩擦过程中微坑会产生动压和捕捉磨屑而减少表面损伤,增强耐磨性。