The photo absorbing, photo transmitting and photoluminescence performances of WiO2 photocatalysts compounded with V2O5 or WO3 were investigated by UV-Vis spectra, transmitting spectra, and PL spectra, respectively. Th...The photo absorbing, photo transmitting and photoluminescence performances of WiO2 photocatalysts compounded with V2O5 or WO3 were investigated by UV-Vis spectra, transmitting spectra, and PL spectra, respectively. The energy band structures of TiO2 photocatalysts were analyzed. The photocatalytic activities of the TiO2 photocatalysts were investigated by splitting of water for 02 evolution. The results indicate that the band gaps of WO3 and V205 are about 2.8 and 2.14 eV, respectively, and the band gap of rutile TiO2 is about 3.08 eV. Speeds of water splitting for 2%WO3-TiO2 and 8%V2O5-TiO2 photocatalysts are 420 and 110 μmol/(L.h), respectively, under UV light irradiation. V2O5 and WO3 compounded with suitable concentration can improve the photocatalytic activity of TiO2 with Fe3+ as electron acceptor.展开更多
The crystal structures, electronic structures and optical properties of nitrogen or/and praseodymium doped anatase TiO2 were calculated by first principles with the plane-wave ultrasoft pseudopotential method based on...The crystal structures, electronic structures and optical properties of nitrogen or/and praseodymium doped anatase TiO2 were calculated by first principles with the plane-wave ultrasoft pseudopotential method based on density functional theory. Highly efficient visible-light-induced nitrogen or/and praseodymium doped anatase TiO2 nanocrystal photocatalyst were synthesized by a microwave chemical method. The calculated results show that the photocatalytic activity of TiO2 can be enhanced by N doping or Pr doping, and can be further enhanced by N+Pr codoping. The band gap change of the codoping TiO2 is more obvious than that of the single ion doping, which results in the red shift of the optical absorption edges. The results are of great significance for the understanding and further development of visible-light response high activity modified TiO2 photocatalyst. The photocatalytic activity of the samples for methyl blue degradation was investigated under the irradiation of fluorescent light. The experimental results show that the codoping TiO2 photocatalytic activity is obviously higher than that of the single ion doping. The experimental results accord with the calculated results.展开更多
As a decorative material, magnesium oxychloride cement was used as a photocatalyst supporter to purify the pollutants indoors. Due to excellent adsorption properties of activated carbon(AC), the photocatalytic compo...As a decorative material, magnesium oxychloride cement was used as a photocatalyst supporter to purify the pollutants indoors. Due to excellent adsorption properties of activated carbon(AC), the photocatalytic composties, TiO2/AC, were prepared and introduced into the porous magnesium oxychloride cement(PMOC) substrate to composite a sort of photocatalytic cementitious material(PCM). The optimal composite processes were assessed by gas chromatograph, using toluene as the target. By comparing the perspective of toluene purification and thorough decomposition, it can be found that the optimal mass ratio for TiO2/AC composites is 4/25, and the heat treatment to TiO2/AC sample at 350 ℃ can play the optimal synergetic role of adsorbents in photocatalytic process. The synergistic effect of TiO2, AC and magnesium oxychloride cement(MOC) was also evaluated by gas chromatograph. One-take molding process was adopted to introduce the TiO2/AC into PMOC substrate, and its optimal mass fraction was 4 wt%, while the appropriate density of substrate was 0.35 g/cm3. Toluene degradation showed that the prepared PCM can degrade pollutants efficiently. The appropriate treatment process of TiO2/AC, mass of TiO2/AC, substrate density, and stable pore structure should be coordinated to maximize the adsorption-photodegradation performance. The combination of photocatalytic materials, adsorbents, and building materials provided a new idea for the application of photocatalysis.展开更多
Photocatalytic reduction method using TiO2 suspension for removal as well as possibly recovery of silver (Ag(I)) in the presence of Cu(II) is examined. The photocatalytic reduction was performed by batch techniq...Photocatalytic reduction method using TiO2 suspension for removal as well as possibly recovery of silver (Ag(I)) in the presence of Cu(II) is examined. The photocatalytic reduction was performed by batch technique in a closed reactor equipped with UV lamp. The concentration of unreduced Ag(I) was analyzed by atomic absorption spectrophotometry method. The research results indicate that Ag(I) in the solution can be removed and recovered effectively as silver metal Ag(0) deposited on the surface of TiO2 for photocatalytic reduction. In addition, the presence of Cu(II) ion with increasing concentration leads to a proportional decline in Ag(I) photoreduction due to the prominent competition in the adsorption on the surface of TiO2. The effectiveness of Ag(I) ion photoreduction in the presence of Cu(II) ion is strongly influenced by solution pH and the highest photoreduction is obtained at pH 5 - 8, which is related with the speciation ofAg(I), TiO2 surface as well as Cu(II) in the solution.展开更多
According to the design principle of the central composite experimental,the method of response surface analysis with three factors and three levels was adopted based on one factor test.A second-order quadratic equatio...According to the design principle of the central composite experimental,the method of response surface analysis with three factors and three levels was adopted based on one factor test.A second-order quadratic equation for photocatalysis of Procion Red MX-5B was built.Response surface and contour were graphed with the decoloration rate of Procion Red MX-5B as the response value.Based on the analysis of the response surface plots and their corresponding contour plots,effects of pH value,irradiation time and catalyst loading were explored.By using this new method,the optimum decoloration condition was obtained as follows:pH value,1.3;irradiation time,49.9 min;catalyst loading,0.57 g/L.In the optimization,R-Squared and Adj R-Squared correlation coefficients for quadratic model were evaluated quite satisfactorily as 0.9310 and 0.8620,respectively.Under the optimum conditions established,the performance of 99.47% for color removal was experimentally reached.It was found that all factors considered have an important effect on the decolorization efficiency of Procion Red MX-5B.By the ANOVA analysis and model confirmation the optimal solution obtained using RSM was experimentally validated and credible with preferable instructional ability for experiments.展开更多
[Objective]The research aimed to study synthesis of the TiO2 photocatalyst modified by Fe/C and photodegradation of 4-t-octylphenol.[Method]Fe/C modified TiO2 photocatalyst was made by sol-gel and solvothermal synthes...[Objective]The research aimed to study synthesis of the TiO2 photocatalyst modified by Fe/C and photodegradation of 4-t-octylphenol.[Method]Fe/C modified TiO2 photocatalyst was made by sol-gel and solvothermal synthesis methods.4-t-octylphenol as test object,photocatalytic performance of the catalyst was investigated.Influences of the Fe doping amount,catalyst amount,pH and sun-light irradiation on reaction were discussed.Moreover,catalyst performance under the condition of interfering ion existence was studied.[Result]When Fe/C doping amount was 0.6%,under the reaction condition of 25 ℃,pH =9.0,300 W mercury lamp and 1.0 g/L of catalyst amount,4-t-octylphenol concentration decreased from 1.00 to 0.02 mg/L by degradation for 100 min.Rises of pH and light intensity could improve catalyst efficiency.The existences of Na +,K + and Ca2+ had no effect on degradation activity of the catalyst.[Conclusion]Fe/C modified TiO2 photocatalyst had better degradation effect on environmental hormone in the sewage.展开更多
TiO2 photocatalyst was supported with tetrabutyl titanate sol as precursor and fine silicon powder obtained from ferroalloys factory as carder to discuss the influence of pH value of gel precursor on microstructure an...TiO2 photocatalyst was supported with tetrabutyl titanate sol as precursor and fine silicon powder obtained from ferroalloys factory as carder to discuss the influence of pH value of gel precursor on microstructure and activity of photocatalyst in the process of synthesizing nano-TiO2 by using sol-gel method, the purpose of which is to provide fundamental data for the recycle of photocatalytic material. Under the irradiation of ultraviolet light, the photocatalytic degradation rate of methyl orange solution was used to characterize the photocatalytic activity of the sample. The specific surface area of the sample was tested by N2 desorption method, crystal form of TiO2 was analyzed by X-ray powder diffraction, and the microtopography of the sample was observed by scanning electron microscopy. The experimental results showed that the acidity of gel precursor could greatly affect the specific surface area and photocatalytic activity of the photocatalyst, and the optimum pH value of the precursor was determined as 2.0, and at this time the specific surface area of photocatalyst could reach 34.0 m^2/g. In the sample, the proporticn of anatase to rutile is 7:3, which makes l0 mg·L^-1 methyl orange solution fade after irradiation by 15W ultraviolet light for 24 h, and the degradation rate might be up to 98.1%.展开更多
A series of carbon nanotubes/TiO2 nanotubes (CNTs/TNTs) composite photocatalysts were successfully prepared by incorporation of CNTs in HNO3 washing process. These photocatalysts were characterized by XRD, N2 physic...A series of carbon nanotubes/TiO2 nanotubes (CNTs/TNTs) composite photocatalysts were successfully prepared by incorporation of CNTs in HNO3 washing process. These photocatalysts were characterized by XRD, N2 physical adsorption, UV-vis diffuse reflectance spectroscopy, TEM and Raman spectroscopy, respectively, and their photocatalytic activities were tested by using methyl orange (MO) as a model compound. Also, the effects of amount of CNTs incorporated, calcination temperature and amount of catalyst on the photocatalytic activity of the composite photocatalyst were systematically investigated. The results show that the CNTs/TNTs composite exhibits much higher photocatalytic activity than that of the TNTs or CNTs alone.展开更多
TiO2 nanofibers decorated with Pt and Pd nanoparticles have been synthesized and studied in various photocatalytic processes. Excellent photocatalytic behavior in the decomposition of organic dyes in water, degradatio...TiO2 nanofibers decorated with Pt and Pd nanoparticles have been synthesized and studied in various photocatalytic processes. Excellent photocatalytic behavior in the decomposition of organic dyes in water, degradation of organic stains on the surface of flexible freestanding cellulose/catalyst composite films and in generation of hydrogen from ethanol using both suspended and immobilized catalysts are demonstrated. The performance of the nanofiber-based TiO2 materials is competitive with and in some cases outperforms--their conventional nanoparticle-based counterparts. In all cases, Pd-decorated TiO2 nanoparticles and nanofibers proved to be more efficient than their Pt-based counterparts, which could be explained on the basis of the formation of nano-sized Schottky interfaces at the contacts between TiO2 and metal nanoparticles. The feasibility of forming cellulose/catalyst composites provides a novel way of utilizing photocatalyst materials in large-area coatings and freestanding films.展开更多
Photocatalysis is considered to be a clean, green and efficient method to purify water. In this report, we first developed a highly efficient ultrafine TiO2 nanorods/g-C3N4 nanosheets (TiO2 NR/CN NS) composites via ...Photocatalysis is considered to be a clean, green and efficient method to purify water. In this report, we first developed a highly efficient ultrafine TiO2 nanorods/g-C3N4 nanosheets (TiO2 NR/CN NS) composites via a simple hydrothermal method. Tiny TiO2 nanorods (diameter: ~1.5 nm and length: ~8.3 nm) were first loaded in situ on the CN NS by adding graphitic carbon nitride (g-C3N4) to the reaction solution. The TiO2 NR/CN NS composites present high charge separation efficiency and broader light absorbance than P25 TiO2. Furthermore, we illustrate that the TiO2 NR/CN NS catalyst possesses high performance for the photocatalytic degradation of the common and stubborn pollutants in water, such as the rhodamine B (RhB) dye and phenol. Under visible light (λ 〉 420 nm) irradiation, the apparent rate of the TiO2 NR/CN NR is 172 and 41 times higher than that of the P25 TiO2 and TiO2 NR, respectively. Additionally, we speculated that the heterojunction formed between TiO2 NR and CN NS, which is the basis for the experiments we have designed and the corresponding results. We demonstrated that reactive oxidative species such as superoxide anion radical and holes play critical roles in the degradation, and the hydroxyl radical contributes nothing to the degradation.展开更多
The performance of CeO2-TiO2 photocatalyst for the photocatalytic reduction of CO2 into methanol was studied under visible light irradiation. The as-prepared catalysts were characterized for their structural, textural...The performance of CeO2-TiO2 photocatalyst for the photocatalytic reduction of CO2 into methanol was studied under visible light irradiation. The as-prepared catalysts were characterized for their structural, textural and optical properties using X-ray diffraction(XRD), field emission scanning electron microscopy(FESEM), X-ray photoelectron spectroscopy(XPS), nitrogen physisorption analysis, UV-vis spectroscopy and photoluminescence(PL) spectroscopy. The characterization results indicated that the presence of CeO2 stabilized the anatase phase of TiO2, decreased its crystallite size, increased the surface area, reduced the band gap energy and lowered the rate of electron-hole pair recombination. The CeO2-TiO2 photocatalyst showed an increased methanol yield of 18.6 μmol/g under visible light irradiation, compared to the bare TiO2(6.0 μmol/g).展开更多
Zr-doped-TiO2 loaded glass fiber(ZT/GF) composite photocatalysts with different Zr/Ti ratios were prepared with a sol–gel process. Zr4+can replace Ti4+in the TiO2 lattice, which is conducive to forming the anatas...Zr-doped-TiO2 loaded glass fiber(ZT/GF) composite photocatalysts with different Zr/Ti ratios were prepared with a sol–gel process. Zr4+can replace Ti4+in the TiO2 lattice, which is conducive to forming the anatase phase and reducing the calcination temperature. The glass fiber carrier was responsible for better dispersion and loading of Zr-doped-TiO2 particles, improving the applicability of the Zr-doped-TiO2. The ZT/GF photocatalysts were characterized by X-ray diffraction(XRD), scanning electron microscope(SEM), Fourier transform infrared spectroscopy(FT-IR), ultraviolet–visible spectroscopy(UV–vis) and Barrett–Joyner–Halenda(BJH). The performance of photocatalysts with different loading was evaluated in formaldehyde degradation under visible light at room temperature. ZT/GF0.2exhibited the highest activity, with a formaldehyde removal rate as high as 95.14% being observed, which is better than that of the photocatalyst particles alone. The stability of the catalyst was also tested, and ZT/GF exhibited excellent catalytic performance with 94.38%removal efficiency, even after seven uses.展开更多
A nanoheterojunction composite photocatalyst Bi2O3/TiO2 working under visible-light (λ≥ 420 nm) was prepared by combining two semiconductors Bi2O3 and TiO2 varying the Bi2O3/TiO2 molar ratio. Maleic acid was emplo...A nanoheterojunction composite photocatalyst Bi2O3/TiO2 working under visible-light (λ≥ 420 nm) was prepared by combining two semiconductors Bi2O3 and TiO2 varying the Bi2O3/TiO2 molar ratio. Maleic acid was employed as an organic binder to unite Bi2O3 and TiO2 nanoparticles. The SEM, TEM, XRD and diffuse reflectance spectra were utilized to characterize the prepared Bi2O3/TiO2 nanoheterojunction. The nanocomposite exhibited unusual high photocatalytic activity in decomposing 2-propanol in gas phase and phenol in aqueous phase and, evolution of CO2 under visible light irradiation while the end members exhibited low photocatalytic activity. The composite was optimized to 5 mol% Bi2O3/TiO2. The remarkable high photocatalytic efficiency originates from the unique relative energy band position of Bi2O3 and TiO2 as well as the absorption of visible light by Bi2O3.展开更多
A novel route to comprehensive utilization of valuable elements such as Ti, A1, Si and Mg in Ti-bearing electric arc furnace molten slag (Ti-bearing EAF slag) was proposed. The route can be expressed as a three-step...A novel route to comprehensive utilization of valuable elements such as Ti, A1, Si and Mg in Ti-bearing electric arc furnace molten slag (Ti-bearing EAF slag) was proposed. The route can be expressed as a three-step process including alkali fusion, water leaching and acidolysis. Following these processes under the optimum conditions, the recovery ratios of TiO2, Al2O3, SiO2 and MgO were about 97.5, 93.5, 27.9 and 53.5%, respectively. Meanwhile, nanostructured TiO2, NaA zeolite and Mg(OH)2 fire retardant were synthesized simultaneously by using Ti-bearing EAF slag as raw materials. In addition, the photocatalytic activity of prepared nanostructured TiO2 and the adsorption property of obtained NaA zeolite were investigated. The results showed that the photodegradation efficiency of as-prepared TiO2 was 80% for rhodamine B and the adsorption efficiency of NaA zeolite was 61% for Cu2+ under the optimum conditions.展开更多
基金Project(11JJ5010) supported by the Natural Science Foundation of Hunan Province, ChinaProject(2011RS4069) supported by the Planned Science and Technology Program of Hunan Province, ChinaProject supported by the Postdoctoral Science Foundation of Central South University,China
文摘The photo absorbing, photo transmitting and photoluminescence performances of WiO2 photocatalysts compounded with V2O5 or WO3 were investigated by UV-Vis spectra, transmitting spectra, and PL spectra, respectively. The energy band structures of TiO2 photocatalysts were analyzed. The photocatalytic activities of the TiO2 photocatalysts were investigated by splitting of water for 02 evolution. The results indicate that the band gaps of WO3 and V205 are about 2.8 and 2.14 eV, respectively, and the band gap of rutile TiO2 is about 3.08 eV. Speeds of water splitting for 2%WO3-TiO2 and 8%V2O5-TiO2 photocatalysts are 420 and 110 μmol/(L.h), respectively, under UV light irradiation. V2O5 and WO3 compounded with suitable concentration can improve the photocatalytic activity of TiO2 with Fe3+ as electron acceptor.
基金Project supported by the National Natural Science Foundation of China(Grant No.50862009)the New Century Excellent Talents in University of the Ministry of Education,China(Grant No.NCET-04-0915)the Natural Science Foundation of Yunnan Province of China(Grant No.2005E007M)
文摘The crystal structures, electronic structures and optical properties of nitrogen or/and praseodymium doped anatase TiO2 were calculated by first principles with the plane-wave ultrasoft pseudopotential method based on density functional theory. Highly efficient visible-light-induced nitrogen or/and praseodymium doped anatase TiO2 nanocrystal photocatalyst were synthesized by a microwave chemical method. The calculated results show that the photocatalytic activity of TiO2 can be enhanced by N doping or Pr doping, and can be further enhanced by N+Pr codoping. The band gap change of the codoping TiO2 is more obvious than that of the single ion doping, which results in the red shift of the optical absorption edges. The results are of great significance for the understanding and further development of visible-light response high activity modified TiO2 photocatalyst. The photocatalytic activity of the samples for methyl blue degradation was investigated under the irradiation of fluorescent light. The experimental results show that the codoping TiO2 photocatalytic activity is obviously higher than that of the single ion doping. The experimental results accord with the calculated results.
基金Funded by the National Natural Science Foundation of China(No.51478370)
文摘As a decorative material, magnesium oxychloride cement was used as a photocatalyst supporter to purify the pollutants indoors. Due to excellent adsorption properties of activated carbon(AC), the photocatalytic composties, TiO2/AC, were prepared and introduced into the porous magnesium oxychloride cement(PMOC) substrate to composite a sort of photocatalytic cementitious material(PCM). The optimal composite processes were assessed by gas chromatograph, using toluene as the target. By comparing the perspective of toluene purification and thorough decomposition, it can be found that the optimal mass ratio for TiO2/AC composites is 4/25, and the heat treatment to TiO2/AC sample at 350 ℃ can play the optimal synergetic role of adsorbents in photocatalytic process. The synergistic effect of TiO2, AC and magnesium oxychloride cement(MOC) was also evaluated by gas chromatograph. One-take molding process was adopted to introduce the TiO2/AC into PMOC substrate, and its optimal mass fraction was 4 wt%, while the appropriate density of substrate was 0.35 g/cm3. Toluene degradation showed that the prepared PCM can degrade pollutants efficiently. The appropriate treatment process of TiO2/AC, mass of TiO2/AC, substrate density, and stable pore structure should be coordinated to maximize the adsorption-photodegradation performance. The combination of photocatalytic materials, adsorbents, and building materials provided a new idea for the application of photocatalysis.
文摘Photocatalytic reduction method using TiO2 suspension for removal as well as possibly recovery of silver (Ag(I)) in the presence of Cu(II) is examined. The photocatalytic reduction was performed by batch technique in a closed reactor equipped with UV lamp. The concentration of unreduced Ag(I) was analyzed by atomic absorption spectrophotometry method. The research results indicate that Ag(I) in the solution can be removed and recovered effectively as silver metal Ag(0) deposited on the surface of TiO2 for photocatalytic reduction. In addition, the presence of Cu(II) ion with increasing concentration leads to a proportional decline in Ag(I) photoreduction due to the prominent competition in the adsorption on the surface of TiO2. The effectiveness of Ag(I) ion photoreduction in the presence of Cu(II) ion is strongly influenced by solution pH and the highest photoreduction is obtained at pH 5 - 8, which is related with the speciation ofAg(I), TiO2 surface as well as Cu(II) in the solution.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 51078100)the National Creative Research Groups granted by NSFC(Grant No. 50821002)+1 种基金Excellent Youth Foundation of Heilongjiang Scientific Committee(Grant No. JC2010-03)State Key Laboratory of Urban Water Resource and Environment(Grant No. 2010DX11)
文摘According to the design principle of the central composite experimental,the method of response surface analysis with three factors and three levels was adopted based on one factor test.A second-order quadratic equation for photocatalysis of Procion Red MX-5B was built.Response surface and contour were graphed with the decoloration rate of Procion Red MX-5B as the response value.Based on the analysis of the response surface plots and their corresponding contour plots,effects of pH value,irradiation time and catalyst loading were explored.By using this new method,the optimum decoloration condition was obtained as follows:pH value,1.3;irradiation time,49.9 min;catalyst loading,0.57 g/L.In the optimization,R-Squared and Adj R-Squared correlation coefficients for quadratic model were evaluated quite satisfactorily as 0.9310 and 0.8620,respectively.Under the optimum conditions established,the performance of 99.47% for color removal was experimentally reached.It was found that all factors considered have an important effect on the decolorization efficiency of Procion Red MX-5B.By the ANOVA analysis and model confirmation the optimal solution obtained using RSM was experimentally validated and credible with preferable instructional ability for experiments.
基金Supported by National Natural Science Foundation Item (41076097,41006097,41106113)Innovation Engagement Fund of Yangzhou University (2011CXJ032,2011CXJ036)
文摘[Objective]The research aimed to study synthesis of the TiO2 photocatalyst modified by Fe/C and photodegradation of 4-t-octylphenol.[Method]Fe/C modified TiO2 photocatalyst was made by sol-gel and solvothermal synthesis methods.4-t-octylphenol as test object,photocatalytic performance of the catalyst was investigated.Influences of the Fe doping amount,catalyst amount,pH and sun-light irradiation on reaction were discussed.Moreover,catalyst performance under the condition of interfering ion existence was studied.[Result]When Fe/C doping amount was 0.6%,under the reaction condition of 25 ℃,pH =9.0,300 W mercury lamp and 1.0 g/L of catalyst amount,4-t-octylphenol concentration decreased from 1.00 to 0.02 mg/L by degradation for 100 min.Rises of pH and light intensity could improve catalyst efficiency.The existences of Na +,K + and Ca2+ had no effect on degradation activity of the catalyst.[Conclusion]Fe/C modified TiO2 photocatalyst had better degradation effect on environmental hormone in the sewage.
基金Fujian Science and Technology Administration (2004I003 and 2006N0037)
文摘TiO2 photocatalyst was supported with tetrabutyl titanate sol as precursor and fine silicon powder obtained from ferroalloys factory as carder to discuss the influence of pH value of gel precursor on microstructure and activity of photocatalyst in the process of synthesizing nano-TiO2 by using sol-gel method, the purpose of which is to provide fundamental data for the recycle of photocatalytic material. Under the irradiation of ultraviolet light, the photocatalytic degradation rate of methyl orange solution was used to characterize the photocatalytic activity of the sample. The specific surface area of the sample was tested by N2 desorption method, crystal form of TiO2 was analyzed by X-ray powder diffraction, and the microtopography of the sample was observed by scanning electron microscopy. The experimental results showed that the acidity of gel precursor could greatly affect the specific surface area and photocatalytic activity of the photocatalyst, and the optimum pH value of the precursor was determined as 2.0, and at this time the specific surface area of photocatalyst could reach 34.0 m^2/g. In the sample, the proporticn of anatase to rutile is 7:3, which makes l0 mg·L^-1 methyl orange solution fade after irradiation by 15W ultraviolet light for 24 h, and the degradation rate might be up to 98.1%.
基金Financial supports from the Project Supported by the Natural Science Foundation of the Jiangsu Province Higher Education Institutions of China(09KJD150002)Project Supported by the Graduate Innovation Program Foundation of the Jiangsu Province Higher Education Institutions of China(CXLX_0570)
文摘A series of carbon nanotubes/TiO2 nanotubes (CNTs/TNTs) composite photocatalysts were successfully prepared by incorporation of CNTs in HNO3 washing process. These photocatalysts were characterized by XRD, N2 physical adsorption, UV-vis diffuse reflectance spectroscopy, TEM and Raman spectroscopy, respectively, and their photocatalytic activities were tested by using methyl orange (MO) as a model compound. Also, the effects of amount of CNTs incorporated, calcination temperature and amount of catalyst on the photocatalytic activity of the composite photocatalyst were systematically investigated. The results show that the CNTs/TNTs composite exhibits much higher photocatalytic activity than that of the TNTs or CNTs alone.
文摘TiO2 nanofibers decorated with Pt and Pd nanoparticles have been synthesized and studied in various photocatalytic processes. Excellent photocatalytic behavior in the decomposition of organic dyes in water, degradation of organic stains on the surface of flexible freestanding cellulose/catalyst composite films and in generation of hydrogen from ethanol using both suspended and immobilized catalysts are demonstrated. The performance of the nanofiber-based TiO2 materials is competitive with and in some cases outperforms--their conventional nanoparticle-based counterparts. In all cases, Pd-decorated TiO2 nanoparticles and nanofibers proved to be more efficient than their Pt-based counterparts, which could be explained on the basis of the formation of nano-sized Schottky interfaces at the contacts between TiO2 and metal nanoparticles. The feasibility of forming cellulose/catalyst composites provides a novel way of utilizing photocatalyst materials in large-area coatings and freestanding films.
基金supported by the Beijing Municipal High Level Innovative Team Building Program(IDHT20180504)the National Natural Science Foundation of China(21671011)+4 种基金Beijing High Talent ProgramBeijing Natural Science Foundation(KZ201710005002)the Large-scale Instrument and Equipment Platform of Beijing University of TechnologyChina Postdoctoral Science FoundationBeijing Postdoctoral Research Foundation
文摘Photocatalysis is considered to be a clean, green and efficient method to purify water. In this report, we first developed a highly efficient ultrafine TiO2 nanorods/g-C3N4 nanosheets (TiO2 NR/CN NS) composites via a simple hydrothermal method. Tiny TiO2 nanorods (diameter: ~1.5 nm and length: ~8.3 nm) were first loaded in situ on the CN NS by adding graphitic carbon nitride (g-C3N4) to the reaction solution. The TiO2 NR/CN NS composites present high charge separation efficiency and broader light absorbance than P25 TiO2. Furthermore, we illustrate that the TiO2 NR/CN NS catalyst possesses high performance for the photocatalytic degradation of the common and stubborn pollutants in water, such as the rhodamine B (RhB) dye and phenol. Under visible light (λ 〉 420 nm) irradiation, the apparent rate of the TiO2 NR/CN NR is 172 and 41 times higher than that of the P25 TiO2 and TiO2 NR, respectively. Additionally, we speculated that the heterojunction formed between TiO2 NR and CN NS, which is the basis for the experiments we have designed and the corresponding results. We demonstrated that reactive oxidative species such as superoxide anion radical and holes play critical roles in the degradation, and the hydroxyl radical contributes nothing to the degradation.
基金the Ministry of Education (MOE), Universiti Kebangsaan Malaysia and Universiti Malaysia Pahang for financial support of this research under RAGS (RDU131418) and FRGS (RDU120112)
文摘The performance of CeO2-TiO2 photocatalyst for the photocatalytic reduction of CO2 into methanol was studied under visible light irradiation. The as-prepared catalysts were characterized for their structural, textural and optical properties using X-ray diffraction(XRD), field emission scanning electron microscopy(FESEM), X-ray photoelectron spectroscopy(XPS), nitrogen physisorption analysis, UV-vis spectroscopy and photoluminescence(PL) spectroscopy. The characterization results indicated that the presence of CeO2 stabilized the anatase phase of TiO2, decreased its crystallite size, increased the surface area, reduced the band gap energy and lowered the rate of electron-hole pair recombination. The CeO2-TiO2 photocatalyst showed an increased methanol yield of 18.6 μmol/g under visible light irradiation, compared to the bare TiO2(6.0 μmol/g).
基金financially supported by the Project of Science and Technology Department of Jiangsu Province (BE2016769)the Natural Science Foundation of China (No. 51608261)+2 种基金Six talent peaks project in Jiangsu Province (2016)Open fund by Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials (KFK1503)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘Zr-doped-TiO2 loaded glass fiber(ZT/GF) composite photocatalysts with different Zr/Ti ratios were prepared with a sol–gel process. Zr4+can replace Ti4+in the TiO2 lattice, which is conducive to forming the anatase phase and reducing the calcination temperature. The glass fiber carrier was responsible for better dispersion and loading of Zr-doped-TiO2 particles, improving the applicability of the Zr-doped-TiO2. The ZT/GF photocatalysts were characterized by X-ray diffraction(XRD), scanning electron microscope(SEM), Fourier transform infrared spectroscopy(FT-IR), ultraviolet–visible spectroscopy(UV–vis) and Barrett–Joyner–Halenda(BJH). The performance of photocatalysts with different loading was evaluated in formaldehyde degradation under visible light at room temperature. ZT/GF0.2exhibited the highest activity, with a formaldehyde removal rate as high as 95.14% being observed, which is better than that of the photocatalyst particles alone. The stability of the catalyst was also tested, and ZT/GF exhibited excellent catalytic performance with 94.38%removal efficiency, even after seven uses.
文摘A nanoheterojunction composite photocatalyst Bi2O3/TiO2 working under visible-light (λ≥ 420 nm) was prepared by combining two semiconductors Bi2O3 and TiO2 varying the Bi2O3/TiO2 molar ratio. Maleic acid was employed as an organic binder to unite Bi2O3 and TiO2 nanoparticles. The SEM, TEM, XRD and diffuse reflectance spectra were utilized to characterize the prepared Bi2O3/TiO2 nanoheterojunction. The nanocomposite exhibited unusual high photocatalytic activity in decomposing 2-propanol in gas phase and phenol in aqueous phase and, evolution of CO2 under visible light irradiation while the end members exhibited low photocatalytic activity. The composite was optimized to 5 mol% Bi2O3/TiO2. The remarkable high photocatalytic efficiency originates from the unique relative energy band position of Bi2O3 and TiO2 as well as the absorption of visible light by Bi2O3.
基金This study was supported by the National Natural Science Foundation of China (Nos. 51471122 and 51604202), the China Postdoctoral Science Foundation (No. 2016M592397) and the Science and Technology Project of Guangdong Province (No. 2013B090600025).
文摘A novel route to comprehensive utilization of valuable elements such as Ti, A1, Si and Mg in Ti-bearing electric arc furnace molten slag (Ti-bearing EAF slag) was proposed. The route can be expressed as a three-step process including alkali fusion, water leaching and acidolysis. Following these processes under the optimum conditions, the recovery ratios of TiO2, Al2O3, SiO2 and MgO were about 97.5, 93.5, 27.9 and 53.5%, respectively. Meanwhile, nanostructured TiO2, NaA zeolite and Mg(OH)2 fire retardant were synthesized simultaneously by using Ti-bearing EAF slag as raw materials. In addition, the photocatalytic activity of prepared nanostructured TiO2 and the adsorption property of obtained NaA zeolite were investigated. The results showed that the photodegradation efficiency of as-prepared TiO2 was 80% for rhodamine B and the adsorption efficiency of NaA zeolite was 61% for Cu2+ under the optimum conditions.