TiO2-coated activated carbon surface (TAs) composites were prepared by a sol-gel method with supercritical pretreatment. The photocatalytic degradation of acid yellow (AY) was investigated under UV radiation to es...TiO2-coated activated carbon surface (TAs) composites were prepared by a sol-gel method with supercritical pretreatment. The photocatalytic degradation of acid yellow (AY) was investigated under UV radiation to estimate activity of catalysts and determine the kinetics. And the effects of parameters including the initial concentration of AY, light intensity and TiO2 content in catalysts were examined. The results indicate that TAs has a higher efficiency in decomposition of AY than P25, pure TiO2 particles as well as the mixture of TiO2 powder and active carbon. The photocatalytic degradation rate is found to follow the pseudo-first order kinetics with respect to the AY concentration. The new kinetic model fairly resembles the classic Langmuir-Hinshelwood equation, and the rate constant is proportional to the square root of the light intensity in a wide range. However, its absorption performance depends on the surface areas of catalysts. The model fits quite well with the experimental data and elucidates phenomena about the effects of the TiO2 content in TAs on the degradation rate.展开更多
In order to develop the high photocatalytic activity of TiO2 under visible light as that under ultraviolet light and make it easy to be separated from treated liquor, a visible light response and spherical activated c...In order to develop the high photocatalytic activity of TiO2 under visible light as that under ultraviolet light and make it easy to be separated from treated liquor, a visible light response and spherical activated carbon (SAC) supported photocatalyst doped with upconversion luminescence agent Er3+:YAlO3 was prepared by immobilizing Er3+:YAlO3/TiO2, which was obtained by combination of Er3+:YAlO3 and TiO2 using sol-gel method, on the surface of SAC. The crystal phase composition, surface structure and element distribution, and light absorption of the new photocatalysts were examined by X-ray diffraction (XRD), energy dispersive X-ray spectra (EDS) analysis, scanning electron microscopy (SEM) and fluorescence spectra analysis (FSA). The photocatalytic oxidation activity of the photocatalysts was also evaluated by the photodegradation of methyl orange (MO) in aqueous solution under visible light irradiation from a LED lamp (λ400 nm). The results showed that Er3+:YAlO3 could perform as the upconversion luminescence agent which converts the visible light up to ultraviolet light. The Er3+:YAlO3/TiO2 calcinated at 700 °C revealed the highest photocatalytic activity. The apparent reaction rate constant could reach 0.0197 min-1 under visible light irradiation.展开更多
TiO2 sol was prepared by sol-gel technique with tetrabutyl titanate as precursor. Supported TiO2 catalysts on activated carbon were prepared by soak and sintering method. The aggregation of nano-TiO2 particles can be ...TiO2 sol was prepared by sol-gel technique with tetrabutyl titanate as precursor. Supported TiO2 catalysts on activated carbon were prepared by soak and sintering method. The aggregation of nano-TiO2 particles can be effectively suppressed by added polyethylene glycol (PEG) as a surface modifier. The average particle diameter of TiO2, specific surface area and absorbability of catalyst can be modified. Based on characteristics of the TiO2 photocatalyst with XRD, specific surface area, adsorption valves of methylene blue and the amount of TiO2 supported on the activated carbon, the photocatalytic degradation of L-acid was studied. The effect of the factors, such as pH of the solution, the initial concentration of L-acid on the photocatalytic degradation of L-acid, were studied also. It was found that when the pH of the solution is 1.95, the amount of photocatalyst is 0.5 g, the concentration of the L-acid solution is 1.34×10^3 mol/L and the illumination time is 7 h, the photocatalytic degradation efficiency of L-acid can reach 89,88%, The catalyst was reused 6 times and its degradation efficiency hardly changed.展开更多
The hierarchical nanostructured N-doped TiO2 immobilized activated carbon fiber(N-TiO2/ACF)porous composites are fabricated to removal dynamic toluene gas.The results show that nitrogen ions doping and ACF modificatio...The hierarchical nanostructured N-doped TiO2 immobilized activated carbon fiber(N-TiO2/ACF)porous composites are fabricated to removal dynamic toluene gas.The results show that nitrogen ions doping and ACF modification can decrease the band gap of TiO2,leading to red shift toward visible light region.Interestingly,N-TiO2/ACF exhibits strongly synergistic effect owing to high surface area,good crystallinity,enhanced bandgap structure and light harvesting.The toluene removal rate of N-TiO2/ACF composites is 2.29 times higher than that of TiO2.The N-TiO2/ACF for toluene degradation followed the Langmuir-Hinshelwood kinetic model,and the rate constant is enhanced 8 times compared with TiO2.The possible photodegradation pathway and mechanisms are proposed.展开更多
Photodegradation of methylene blue (MB) and phenol (Ph) on TiO2 in presence of H-type and L-type activated carbons (AC) was studied. Photodegradation of MB and Ph were studied under two different lamps and results wer...Photodegradation of methylene blue (MB) and phenol (Ph) on TiO2 in presence of H-type and L-type activated carbons (AC) was studied. Photodegradation of MB and Ph were studied under two different lamps and results were compared against those obtained on a commercial TiO2. Apparent first order rate constant for the degradation of MB was higher in presence of any AC in comparison of TiO2 alone while only in presence of ACco2-800phenol was photodegradated in shorter irradiation time than that required by TiO2. It can be concluded that TiO2 enhances its photoactivity by a factor up to 8.7 in the degradation of MB in presence of AC and this effect is associated to the specific surface properties of AC.展开更多
A stain-based screening method was developed to screen different catalyst coatings for their germicidal activity. A Baclight dead/live bacteria viability kit (invitrogen, molecular probes) was used for staining the ...A stain-based screening method was developed to screen different catalyst coatings for their germicidal activity. A Baclight dead/live bacteria viability kit (invitrogen, molecular probes) was used for staining the cell. The screening was carried out following a standard procedure. This included loading cell suspension to solid surface and maintaining contact for 30 min, then staining with a mixture containing dyes. The stained cells were observed using an epifluorescent microscope and photographed with a CCD camera under UV. Metal-doped TiO2 coatings on AI plates were prepared and tested for non-UV germicidal activity without using UV. It was tested using model microorganisms such as Bakers Yeast (Saccharomyces cerevisiae), Bacillus subtilis, Pseudomonas putida, and Escherichia coli. On the basis of the germicidal activity of catalyst and the degree of damage caused to the cells, the stained cells may appear green (viable), green with red or yellow nuclei and yellow (compromised) or red (nonviable). According to their stained color, cells were counted to calculate the percentage of dead, live, and compromised cells. Compromised cells are cells that grow very slowly after reculturing indicating a degree of reversible cell damage. Screening the germicidal activity using this staining method is accurate and efficient, and requires less time than the culture-based method. A modification to the procedure for measuring germicidal activity of rough surfaces or fibrous coatings was developed. Both TiO2 and metal-doped TiO2 (Ag, Pt, Au, Cu) possess non-UV based germicidal activity. The germicidal activity of TiO2 was found to be related with its wetting property and can be improved by UV irradiation before testing. It is not greatly affected by contact time, indicating a fast acting germicidal activity.展开更多
Iron(Ⅲ)-doped nanostructure TiO2-coated SiO2 (TiO2/SiO2) particles were prepared using the layer-by-layer assembly technique and their photocatalytic property was studied. TiO2 colloids were synthesized employing...Iron(Ⅲ)-doped nanostructure TiO2-coated SiO2 (TiO2/SiO2) particles were prepared using the layer-by-layer assembly technique and their photocatalytic property was studied. TiO2 colloids were synthesized employing the sol-gel method with TiChas a precursor. The samples were characterized by Fourier transform infrared spectroscopy (FTIR), SEM, EDS, XPS, and XRD. The experimental results show that TiO2 nanopowders on the surface of SiO2 particles are well distributed, the amount of TiO2 is increased with the adding of coating layers, the pure anatase-TiO2 coating layers are synthesized at 500℃, and the photocatalytic activity of Fe^3+-doped TiO2/SiO2 is higher than that of undoped TiO2/SiO2.展开更多
The Photocatalytic characterization of TiO2 supported on active carbon was investigated for photocatalytic decomposition of dichloroacetic acid. It was found that TiO2 / AC exhibited a higher photocatalytic activity t...The Photocatalytic characterization of TiO2 supported on active carbon was investigated for photocatalytic decomposition of dichloroacetic acid. It was found that TiO2 / AC exhibited a higher photocatalytic activity than pure TiO2. The reason is that active carbon acting as powerful adsorbent supports makes high concentration environments of organic pollutant molecules around TiO2 particles.展开更多
To improve the durability of underwater rotating products,the corrosion characteristics in harsh marine environment were evaluated through various electrochemical experiments on the Al2O3-3TiO2 and CoNiCrAlY coating l...To improve the durability of underwater rotating products,the corrosion characteristics in harsh marine environment were evaluated through various electrochemical experiments on the Al2O3-3TiO2 and CoNiCrAlY coating layers by atmospheric pressure plasma spray coating process.By evaluating the corrosion resistance of these materials,their applicability to environmentally friendly power generation equipment such as blades of tidal current turbines was examined.According to the Tafel analysis for micro-areas including the coating layer,the coating/metal interlayer and the base metal,the Al2O3-3TiO2 coating layer and the CoNiCrAlY coating layer show markedly lower corrosion current density than the base metal.The corrosion current density of the CoNiCrAlY coating layer (9.75316×10-8A/cm2) is about 1.6 times more than that of the Al2O3-3TiO2 coating layer (6.13139×10-8A/cm2).展开更多
The conventional Al2O3-13 wt. % TiO2 composite ceramic coatings are fabricated by plasma spraying on the surface of extrusion wheel. The microstrueture, morphology and phase compositions of the substrate and coat- ing...The conventional Al2O3-13 wt. % TiO2 composite ceramic coatings are fabricated by plasma spraying on the surface of extrusion wheel. The microstrueture, morphology and phase compositions of the substrate and coat- ing are investigated by using X-ray diffractometry (XRD) , scanning electron microsopy (SEM) and energy dis- persive spectroscopy (EDS). Moreover, the microhardness of the substrate and the coating are investigated using Vickers mierohardness tester, the friction and wear behaviors of the substrate and the coating are investigated by using a block-on-ring tribometer under dry sliding conditions with the load of 245 N. The results show that both γ-Al2O3 and α-Al2O3 phases are observed in the as-sprayed coatings, the mian phase is γ-Al2O3. There are white particulates Al2O3 on its surface. The Al2O3-13 wt. % TiO2 coating possesses higher mierohardness which is about 1018HV and 1.6 times that of the substrate. The wear performance of coating is better than that of the substrate. In a practical application, the life of the extrusion wheel which is plasma sprayed Al2O3-13 wt. % TiO2 coating on the surface is 1.2 times that of the conventional extrusion wheel, and the life is about 330 h.展开更多
A high active novel TiO2/AC composite photocatalyst was prepared and used for phenol degradation. It was much more active than P-25 and exhibiting good decantability, less deactivation after several runs and less sens...A high active novel TiO2/AC composite photocatalyst was prepared and used for phenol degradation. It was much more active than P-25 and exhibiting good decantability, less deactivation after several runs and less sensitive to pH change. Diffuse reflectance spectra (DRS) revealed that the electronic change in TiO2 did not occur by the addition of AC. Results of SEM and XRD suggested that better TiO2 distribution can be achieved when optimal AC content was adopted. The performance of the prepared TiO2/5AC catalyst revealed great practical potential in wastewater treatment field.展开更多
In this work, TiO2/Ti composite films were fabricated by 2-setp MCT and the following high temperature oxidation. Antibacterial activity of the composite films treated by ultrasonic cleaning to increase the performanc...In this work, TiO2/Ti composite films were fabricated by 2-setp MCT and the following high temperature oxidation. Antibacterial activity of the composite films treated by ultrasonic cleaning to increase the performance reliability was examined. The prepared TiO2/Ti composite films showed high photocatalytic activity in the degradation of methylene blue solution. It is obvious that? TiO2/Ti composite films have antibacterial activity under UV irradiation.展开更多
基金Project(50802034) supported by the National Natural Science Foundation of ChinaProject(11A093) supported by the Key Project Foundation by the Education Department of Hunan Province,China
文摘TiO2-coated activated carbon surface (TAs) composites were prepared by a sol-gel method with supercritical pretreatment. The photocatalytic degradation of acid yellow (AY) was investigated under UV radiation to estimate activity of catalysts and determine the kinetics. And the effects of parameters including the initial concentration of AY, light intensity and TiO2 content in catalysts were examined. The results indicate that TAs has a higher efficiency in decomposition of AY than P25, pure TiO2 particles as well as the mixture of TiO2 powder and active carbon. The photocatalytic degradation rate is found to follow the pseudo-first order kinetics with respect to the AY concentration. The new kinetic model fairly resembles the classic Langmuir-Hinshelwood equation, and the rate constant is proportional to the square root of the light intensity in a wide range. However, its absorption performance depends on the surface areas of catalysts. The model fits quite well with the experimental data and elucidates phenomena about the effects of the TiO2 content in TAs on the degradation rate.
基金Projects (50908096, 50908097) supported by the National Natural Science Foundation of ChinaProject (20100471251) supported by China Postdoctoral Science Foundation
文摘In order to develop the high photocatalytic activity of TiO2 under visible light as that under ultraviolet light and make it easy to be separated from treated liquor, a visible light response and spherical activated carbon (SAC) supported photocatalyst doped with upconversion luminescence agent Er3+:YAlO3 was prepared by immobilizing Er3+:YAlO3/TiO2, which was obtained by combination of Er3+:YAlO3 and TiO2 using sol-gel method, on the surface of SAC. The crystal phase composition, surface structure and element distribution, and light absorption of the new photocatalysts were examined by X-ray diffraction (XRD), energy dispersive X-ray spectra (EDS) analysis, scanning electron microscopy (SEM) and fluorescence spectra analysis (FSA). The photocatalytic oxidation activity of the photocatalysts was also evaluated by the photodegradation of methyl orange (MO) in aqueous solution under visible light irradiation from a LED lamp (λ400 nm). The results showed that Er3+:YAlO3 could perform as the upconversion luminescence agent which converts the visible light up to ultraviolet light. The Er3+:YAlO3/TiO2 calcinated at 700 °C revealed the highest photocatalytic activity. The apparent reaction rate constant could reach 0.0197 min-1 under visible light irradiation.
基金The State Education Ministry "211" Project, the Natural Science Foundation of the Education Commission of Jiangsu Province(2005103TSJB156) and the Funding of the Environment Friendship Laboratory of Nanjing Normal University
文摘TiO2 sol was prepared by sol-gel technique with tetrabutyl titanate as precursor. Supported TiO2 catalysts on activated carbon were prepared by soak and sintering method. The aggregation of nano-TiO2 particles can be effectively suppressed by added polyethylene glycol (PEG) as a surface modifier. The average particle diameter of TiO2, specific surface area and absorbability of catalyst can be modified. Based on characteristics of the TiO2 photocatalyst with XRD, specific surface area, adsorption valves of methylene blue and the amount of TiO2 supported on the activated carbon, the photocatalytic degradation of L-acid was studied. The effect of the factors, such as pH of the solution, the initial concentration of L-acid on the photocatalytic degradation of L-acid, were studied also. It was found that when the pH of the solution is 1.95, the amount of photocatalyst is 0.5 g, the concentration of the L-acid solution is 1.34×10^3 mol/L and the illumination time is 7 h, the photocatalytic degradation efficiency of L-acid can reach 89,88%, The catalyst was reused 6 times and its degradation efficiency hardly changed.
基金This study was supported by the CNPC Research Institute of Safety and Environmental Protection Technology(No.PPCIP2017005).
文摘The hierarchical nanostructured N-doped TiO2 immobilized activated carbon fiber(N-TiO2/ACF)porous composites are fabricated to removal dynamic toluene gas.The results show that nitrogen ions doping and ACF modification can decrease the band gap of TiO2,leading to red shift toward visible light region.Interestingly,N-TiO2/ACF exhibits strongly synergistic effect owing to high surface area,good crystallinity,enhanced bandgap structure and light harvesting.The toluene removal rate of N-TiO2/ACF composites is 2.29 times higher than that of TiO2.The N-TiO2/ACF for toluene degradation followed the Langmuir-Hinshelwood kinetic model,and the rate constant is enhanced 8 times compared with TiO2.The possible photodegradation pathway and mechanisms are proposed.
文摘Photodegradation of methylene blue (MB) and phenol (Ph) on TiO2 in presence of H-type and L-type activated carbons (AC) was studied. Photodegradation of MB and Ph were studied under two different lamps and results were compared against those obtained on a commercial TiO2. Apparent first order rate constant for the degradation of MB was higher in presence of any AC in comparison of TiO2 alone while only in presence of ACco2-800phenol was photodegradated in shorter irradiation time than that required by TiO2. It can be concluded that TiO2 enhances its photoactivity by a factor up to 8.7 in the degradation of MB in presence of AC and this effect is associated to the specific surface properties of AC.
基金Project supported by the HK Innovation and Technology Fund.
文摘A stain-based screening method was developed to screen different catalyst coatings for their germicidal activity. A Baclight dead/live bacteria viability kit (invitrogen, molecular probes) was used for staining the cell. The screening was carried out following a standard procedure. This included loading cell suspension to solid surface and maintaining contact for 30 min, then staining with a mixture containing dyes. The stained cells were observed using an epifluorescent microscope and photographed with a CCD camera under UV. Metal-doped TiO2 coatings on AI plates were prepared and tested for non-UV germicidal activity without using UV. It was tested using model microorganisms such as Bakers Yeast (Saccharomyces cerevisiae), Bacillus subtilis, Pseudomonas putida, and Escherichia coli. On the basis of the germicidal activity of catalyst and the degree of damage caused to the cells, the stained cells may appear green (viable), green with red or yellow nuclei and yellow (compromised) or red (nonviable). According to their stained color, cells were counted to calculate the percentage of dead, live, and compromised cells. Compromised cells are cells that grow very slowly after reculturing indicating a degree of reversible cell damage. Screening the germicidal activity using this staining method is accurate and efficient, and requires less time than the culture-based method. A modification to the procedure for measuring germicidal activity of rough surfaces or fibrous coatings was developed. Both TiO2 and metal-doped TiO2 (Ag, Pt, Au, Cu) possess non-UV based germicidal activity. The germicidal activity of TiO2 was found to be related with its wetting property and can be improved by UV irradiation before testing. It is not greatly affected by contact time, indicating a fast acting germicidal activity.
基金the Nationnal Natural Science Foundation of China (No. 50342016).
文摘Iron(Ⅲ)-doped nanostructure TiO2-coated SiO2 (TiO2/SiO2) particles were prepared using the layer-by-layer assembly technique and their photocatalytic property was studied. TiO2 colloids were synthesized employing the sol-gel method with TiChas a precursor. The samples were characterized by Fourier transform infrared spectroscopy (FTIR), SEM, EDS, XPS, and XRD. The experimental results show that TiO2 nanopowders on the surface of SiO2 particles are well distributed, the amount of TiO2 is increased with the adding of coating layers, the pure anatase-TiO2 coating layers are synthesized at 500℃, and the photocatalytic activity of Fe^3+-doped TiO2/SiO2 is higher than that of undoped TiO2/SiO2.
基金the National Natural Science Foundation of China (No.29877025).
文摘The Photocatalytic characterization of TiO2 supported on active carbon was investigated for photocatalytic decomposition of dichloroacetic acid. It was found that TiO2 / AC exhibited a higher photocatalytic activity than pure TiO2. The reason is that active carbon acting as powerful adsorbent supports makes high concentration environments of organic pollutant molecules around TiO2 particles.
基金Project supported by the Ministry of Education,Science Technology(MEST)Korea Industrial Technology Foundation(KOTEF)through the Human Resource Training Project for Regional Innovation
文摘To improve the durability of underwater rotating products,the corrosion characteristics in harsh marine environment were evaluated through various electrochemical experiments on the Al2O3-3TiO2 and CoNiCrAlY coating layers by atmospheric pressure plasma spray coating process.By evaluating the corrosion resistance of these materials,their applicability to environmentally friendly power generation equipment such as blades of tidal current turbines was examined.According to the Tafel analysis for micro-areas including the coating layer,the coating/metal interlayer and the base metal,the Al2O3-3TiO2 coating layer and the CoNiCrAlY coating layer show markedly lower corrosion current density than the base metal.The corrosion current density of the CoNiCrAlY coating layer (9.75316×10-8A/cm2) is about 1.6 times more than that of the Al2O3-3TiO2 coating layer (6.13139×10-8A/cm2).
文摘The conventional Al2O3-13 wt. % TiO2 composite ceramic coatings are fabricated by plasma spraying on the surface of extrusion wheel. The microstrueture, morphology and phase compositions of the substrate and coat- ing are investigated by using X-ray diffractometry (XRD) , scanning electron microsopy (SEM) and energy dis- persive spectroscopy (EDS). Moreover, the microhardness of the substrate and the coating are investigated using Vickers mierohardness tester, the friction and wear behaviors of the substrate and the coating are investigated by using a block-on-ring tribometer under dry sliding conditions with the load of 245 N. The results show that both γ-Al2O3 and α-Al2O3 phases are observed in the as-sprayed coatings, the mian phase is γ-Al2O3. There are white particulates Al2O3 on its surface. The Al2O3-13 wt. % TiO2 coating possesses higher mierohardness which is about 1018HV and 1.6 times that of the substrate. The wear performance of coating is better than that of the substrate. In a practical application, the life of the extrusion wheel which is plasma sprayed Al2O3-13 wt. % TiO2 coating on the surface is 1.2 times that of the conventional extrusion wheel, and the life is about 330 h.
基金This project was financially supported by Specialized Research Fund for the Doctoral Program of Higher Education (No. 20050225006)the National Natural Science Foundation of China (No. 30400339).
文摘A high active novel TiO2/AC composite photocatalyst was prepared and used for phenol degradation. It was much more active than P-25 and exhibiting good decantability, less deactivation after several runs and less sensitive to pH change. Diffuse reflectance spectra (DRS) revealed that the electronic change in TiO2 did not occur by the addition of AC. Results of SEM and XRD suggested that better TiO2 distribution can be achieved when optimal AC content was adopted. The performance of the prepared TiO2/5AC catalyst revealed great practical potential in wastewater treatment field.
文摘In this work, TiO2/Ti composite films were fabricated by 2-setp MCT and the following high temperature oxidation. Antibacterial activity of the composite films treated by ultrasonic cleaning to increase the performance reliability was examined. The prepared TiO2/Ti composite films showed high photocatalytic activity in the degradation of methylene blue solution. It is obvious that? TiO2/Ti composite films have antibacterial activity under UV irradiation.