Photocatalyst was prepared by immobilizing TiO2 on glass beads using the traditional sol-gel method. Ultraviolet light (UV) produced by pulsed streamer discharge was then used to induce photocatalytic activity of Ti...Photocatalyst was prepared by immobilizing TiO2 on glass beads using the traditional sol-gel method. Ultraviolet light (UV) produced by pulsed streamer discharge was then used to induce photocatalytic activity of TiO2 photocatalyst. Decolouration efficiency of the representative azo dye (acid orange 7, AOT) was investigated using the synergistic system of pulsed streamer discharge plasma and TiO2 photocatalysis. The obtained results showed that the decolouration rate of AO7 could be increased by 16.7% under the condition of adding supported TiO2 in the pulsed streamer discharge system, compared to that in the sole pulsed streamer discharge plasma system, due to the synergistic effect of pulsed streamer discharge and TiO2 photocatalysis induced by pulsed streamer discharge. The synergistic system of pulsed streamer discharge and TiO2 photocatalyst was found to have more reactive radicals for degradation of organic compounds in water.展开更多
Heterogeneous photocatalysis is one of the advanced oxidation processes (AOP’s). These are very used nowadays for their implementation in tertiary water treatment with solar activation, with very good results. In thi...Heterogeneous photocatalysis is one of the advanced oxidation processes (AOP’s). These are very used nowadays for their implementation in tertiary water treatment with solar activation, with very good results. In this study, TiO2 porous films were synthesized by sol-gel method. Polyethylene glycol (PEG) 4000 was used as a templating reagent, which is oxidized at a lower temperature than TiO2. This allows the formation of a “skeleton” of porous TiO2 with increased surface area, resulting in higher photocatalytic activity. The film characterization was made with help of FE-SEM microscope, XRD diffractometer and scotch tape test. Finally, the oxidation experiments were performed using methylene blue as a model pollutant and they revealed an increase in the photocatalytic activity of porous films in comparison with the non-porous films.展开更多
TiO2 films were deposited at room temperature by DC pulse magnetron sputtering system.The crystalline structures,morphological features and photocatalytic activity of TiO2 films were systematically investigated by X-r...TiO2 films were deposited at room temperature by DC pulse magnetron sputtering system.The crystalline structures,morphological features and photocatalytic activity of TiO2 films were systematically investigated by X-ray diffraction(XRD),atomic force microscopy(AFM) and ultraviolet spectrophotometer,respectively.The results indicated that working pressure was the key deposition parameter in?uencing the TiO2 film phase composition at room temperature,which directly affected its photocatalytic activity.With increasing working pressure,the target self-bias decreases monotonously.Therefore,low temperature TiO2 phase(anatase) could be deposited with high working pressure.The anatase TiO2 films deposited with 1.4 Pa working pressure displayed the highest photocatalytic activity by the decomposition of Methyl Orange solution,which the degradation rate reached the maximum(35%) after irradiation by ultraviolet light for 1 h.展开更多
Chrome-doped titanium oxide films were prepared by reactive magnetron sputtering method. The films deposited on glass slides at room temperature were investigated by atom force microscope, X-ray diffractometer, X-ray ...Chrome-doped titanium oxide films were prepared by reactive magnetron sputtering method. The films deposited on glass slides at room temperature were investigated by atom force microscope, X-ray diffractometer, X-ray photoelectron spectroscopy, UV-Vis spectrophotometer, the photoluminescence (PL) and ellipse polarization apparatus. The results indicate that TiO2-Cr film exists in the form of amorphous. The prepared films possess a band gap of less than 3.20 eV, and a new absorption peak. The films, irradiated for 5 h under UV light, exhibit excellent photocatalytic activities with the optimum decomposition rate at 98.5% for methylene blue. Consequently, the thickness threshold on these films is 114 nm, at which the rate of photodegradation is 95% in 5 h. When the thickness is over 114 nm, the rate of photodegradation becomes stable. This result is completely different from that of crystalloid TiO2 thin film.展开更多
A PANI/TiO2 composite film deposited on the glass surface was successfully prepared using sol-gel dip-coating technique and chemical oxidation method. The film was characterized using XRD, AFM, and UV. The result show...A PANI/TiO2 composite film deposited on the glass surface was successfully prepared using sol-gel dip-coating technique and chemical oxidation method. The film was characterized using XRD, AFM, and UV. The result showed that the TiO2 film consists of both cuboid-shaped and anatase-phased TiO2 nanoparticles. The average grain size of TiO2 in the film was approximately 20 nm. After coating with PANI, the particle was changed into irregular spherical-shaped and the size was increased up to approximately 35 nm in diameter. UV-Vis spectroscopy analysis indicated that the coating of TiO2 with PANI would result in an enhancement of photocatalytic efficiency and an extension of the photoresponse of TiO2. The band gap of the PANI/TiO2 film was 3.18 eV. The photocatalytic property of the film was evaluated by the degradation of rhodamine-B. It was found that 67.1% and 83.2% of rhodamine-B could be degraded under sunlight and UV irradiation within 120 min using the PANI/TiO2 composite t-tim as photocatalyst.展开更多
The nanotitanium dioxide (TiO2) photocatalytic and porous ceramic filtering technique is one of the advanced methods to effectively treat organic wastewater. The TiO2 sol doped with Fe^3+ ions was prepared by sol-g...The nanotitanium dioxide (TiO2) photocatalytic and porous ceramic filtering technique is one of the advanced methods to effectively treat organic wastewater. The TiO2 sol doped with Fe^3+ ions was prepared by sol-gel processing. The influences of the process conditions of coating nanophotocatalytic material- Fe^3+-TiO2 film on the surface of porous ceramic filter by dipping-lift method on the performance of porous ceramic filter were studied. The porous ceramic filters have two functions at the same time, filtration and photocatalytic degradation. The results of this study showed that the pH and viscosity of the sol, amount of Fe^3+ ions doped as well as the coating times greatly affect the quality of coating film, the performance parameters and the photocatalytic activity of the porous ceramic filter. When the pH of the sol is 3-4, the viscosity is about 6 mPa.S, the amount of doped Fe^3+ ions is about 2.0 g/L, the porous ceramic filter has been shown to have the best filtering performance and photocatalytic activity. In this condition, the porosity of porous ceramic is about 42.5%, the pore diameter is 8-10μm. The degradation of methyl-orange is 74.76% under lighting for 120 rain.展开更多
In order to clarify the respective role of the UV light, catalyst, external bias as well as their combined effects on the photodegradation process and to clarify the photocatalytic mechanism under different experiment...In order to clarify the respective role of the UV light, catalyst, external bias as well as their combined effects on the photodegradation process and to clarify the photocatalytic mechanism under different experimental conditions, a series of experiments were conducted in a shallow pond photoreactor with an effective volume of 100 mL using TiO 2/Ti thin film prepared by anodization as photocatalyst. A 300W UV lamp( E max =365 nm)was used as side light source. The effect of light intensity on photocatalysis was also conducted. The results show that photocatalytic oxidation is an effective method for phenol removal from waters. The degradation rate can be improved by applying an anodic bias to the TiO 2/Ti film electrode, phenol can not be decomposed under only 365 nm UV light irradiation even in the presence of hydrogen peroxide. In the range of our research, the phenol removal rate can be described in terms of pseudo first order kinetics.展开更多
TiO2-SiO2 thin films have been prepared on slide glass substrates by sol-gel method, and the effect of SiO2 additive on photo-generated hydrophilicity of TiO2 thin film was investigated by measuring the contact angle ...TiO2-SiO2 thin films have been prepared on slide glass substrates by sol-gel method, and the effect of SiO2 additive on photo-generated hydrophilicity of TiO2 thin film was investigated by measuring the contact angle of water, the microstructure, the transmittance, the photocatalytic activity and the specific surface area . The results showed that 10mol% of SiO2 additive was the most effective for decreasing contact angle of water. The SiO2 additive of less than 30mol% has a suppressive effect on the crystal growth of anatase in calcinations, resulting in a large surface area. Consequently, the super-hydrophilicity was improved.展开更多
TiO2 mesocrystals can considerably enhance charge separation owing to their oriented superstructures,with fewer internal defects and porous properties providing more active sites.In this work,we prepared TiO2 mesocrys...TiO2 mesocrystals can considerably enhance charge separation owing to their oriented superstructures,with fewer internal defects and porous properties providing more active sites.In this work,we prepared TiO2 mesocrystal films by a direct annealing method.The morphology and crystal phase of the film were controlled by adjusting the ratio of NH4F and the calcination temperature.Moreover,we found that Au nanoparticles loaded on a TiO2 mesocrystal film enabled highly efficient visible light photocatalytic properties.The photocatalytic activities were studied by hydrogen generation and photoreduction of Cr(VI).This work represents a considerable advance in the development and application of the TiO2 mesocrystals.展开更多
TiO2 is a promising photocatalyst. However, the low photocatalytic efficiency calls for the modification of TiO2. Metal- and nonmetal-doping of TiO2 have been proved to be effective ways to enhance photocatalytic prop...TiO2 is a promising photocatalyst. However, the low photocatalytic efficiency calls for the modification of TiO2. Metal- and nonmetal-doping of TiO2 have been proved to be effective ways to enhance photocatalytic properties. This review provides a deep insight into the understanding of the metal- and nonmetal-doped TiO2 photocatalysts. This article begins with the introduction of the crystal structures of TiO2 and applications of TiO2 materials. We then reviewed the doped-TiO2 system in two categories: (1) metal-doped TiO2 photocatalysts system, and (2) nonmetal-doped TiO2 photocatalysts system. Both experimental results and theoretical analyses are elaborated in this section. In the following part, for the advantages of TiO2 thin films over particles, various preparation methods to obtain TiO2 thin films are briefly discussed. Finally, this review ends with a concise conclusion and outlook of new trends in the development of TiO2-based photocatalysts.展开更多
Ti02 coatings on natural feather zeolite are respectively prepared by a collosol (Sol-gel) method and two powder coating methods with deionizod water or dehydrated ethanol as a dispersant. During degradation of orth...Ti02 coatings on natural feather zeolite are respectively prepared by a collosol (Sol-gel) method and two powder coating methods with deionizod water or dehydrated ethanol as a dispersant. During degradation of orthomono- chlorphenol solutions by ultraviolet, the strong adsorption capability of the zeolite results in increased concentration of substrate on its surface. The Ti(h film coated on feather zeolite further enhances the photocatalytic activity. The TiO~ film on the zeolite prepared by the Sol-gel method is found more effective as a catalyst than that by two powder coating methods.展开更多
We prepared TiO 2(anatase) and Sn doped TiO 2 nanoparticlate film by Plasma enhanced Chemical Vapor Deposition(PECVD) method. XRD and XPS experiments showed that Sn was doped into the lattice of TiO 2 with a ratio of ...We prepared TiO 2(anatase) and Sn doped TiO 2 nanoparticlate film by Plasma enhanced Chemical Vapor Deposition(PECVD) method. XRD and XPS experiments showed that Sn was doped into the lattice of TiO 2 with a ratio of n (Sn)∶ n (Ti)=1∶10 . Sn doping largely enhanced the photocatalytic activity of TiO 2 film for phenol degradation. The enhancement in photoactivity by doping was discussed, based on the characterization with AFM, FTIR and EFISPS. Sn doping produced localized level of Sn 4+ in the band gap of TiO 2, about 0.4 eV below the conduction band, which could capture photogenerated electrons and reduce O 2 adsorbed on the surface of TiO 2 film, thus accelerated the photocatalytic reaction.展开更多
基金supported by the National Natural Science Foundation Committee of China(No.20377006)Foundation of Education Ministry of China(No.2005141002)
文摘Photocatalyst was prepared by immobilizing TiO2 on glass beads using the traditional sol-gel method. Ultraviolet light (UV) produced by pulsed streamer discharge was then used to induce photocatalytic activity of TiO2 photocatalyst. Decolouration efficiency of the representative azo dye (acid orange 7, AOT) was investigated using the synergistic system of pulsed streamer discharge plasma and TiO2 photocatalysis. The obtained results showed that the decolouration rate of AO7 could be increased by 16.7% under the condition of adding supported TiO2 in the pulsed streamer discharge system, compared to that in the sole pulsed streamer discharge plasma system, due to the synergistic effect of pulsed streamer discharge and TiO2 photocatalysis induced by pulsed streamer discharge. The synergistic system of pulsed streamer discharge and TiO2 photocatalyst was found to have more reactive radicals for degradation of organic compounds in water.
文摘Heterogeneous photocatalysis is one of the advanced oxidation processes (AOP’s). These are very used nowadays for their implementation in tertiary water treatment with solar activation, with very good results. In this study, TiO2 porous films were synthesized by sol-gel method. Polyethylene glycol (PEG) 4000 was used as a templating reagent, which is oxidized at a lower temperature than TiO2. This allows the formation of a “skeleton” of porous TiO2 with increased surface area, resulting in higher photocatalytic activity. The film characterization was made with help of FE-SEM microscope, XRD diffractometer and scotch tape test. Finally, the oxidation experiments were performed using methylene blue as a model pollutant and they revealed an increase in the photocatalytic activity of porous films in comparison with the non-porous films.
基金supported by the Dalian Foundation for Development of Science and Technology (No.2006A13GX029)
文摘TiO2 films were deposited at room temperature by DC pulse magnetron sputtering system.The crystalline structures,morphological features and photocatalytic activity of TiO2 films were systematically investigated by X-ray diffraction(XRD),atomic force microscopy(AFM) and ultraviolet spectrophotometer,respectively.The results indicated that working pressure was the key deposition parameter in?uencing the TiO2 film phase composition at room temperature,which directly affected its photocatalytic activity.With increasing working pressure,the target self-bias decreases monotonously.Therefore,low temperature TiO2 phase(anatase) could be deposited with high working pressure.The anatase TiO2 films deposited with 1.4 Pa working pressure displayed the highest photocatalytic activity by the decomposition of Methyl Orange solution,which the degradation rate reached the maximum(35%) after irradiation by ultraviolet light for 1 h.
文摘Chrome-doped titanium oxide films were prepared by reactive magnetron sputtering method. The films deposited on glass slides at room temperature were investigated by atom force microscope, X-ray diffractometer, X-ray photoelectron spectroscopy, UV-Vis spectrophotometer, the photoluminescence (PL) and ellipse polarization apparatus. The results indicate that TiO2-Cr film exists in the form of amorphous. The prepared films possess a band gap of less than 3.20 eV, and a new absorption peak. The films, irradiated for 5 h under UV light, exhibit excellent photocatalytic activities with the optimum decomposition rate at 98.5% for methylene blue. Consequently, the thickness threshold on these films is 114 nm, at which the rate of photodegradation is 95% in 5 h. When the thickness is over 114 nm, the rate of photodegradation becomes stable. This result is completely different from that of crystalloid TiO2 thin film.
基金This work was financially supported by the Combined Project between the Educational Commission and the Economic Commission of Gansu Province (Nos. 99CX-04, 0310B-08)the Natural Science Foundation of Gansu Province (No. 3ZS041-A25-028)the Invention Project of Science & Technology (No. KJCXGC-01, NWNU), China.
文摘A PANI/TiO2 composite film deposited on the glass surface was successfully prepared using sol-gel dip-coating technique and chemical oxidation method. The film was characterized using XRD, AFM, and UV. The result showed that the TiO2 film consists of both cuboid-shaped and anatase-phased TiO2 nanoparticles. The average grain size of TiO2 in the film was approximately 20 nm. After coating with PANI, the particle was changed into irregular spherical-shaped and the size was increased up to approximately 35 nm in diameter. UV-Vis spectroscopy analysis indicated that the coating of TiO2 with PANI would result in an enhancement of photocatalytic efficiency and an extension of the photoresponse of TiO2. The band gap of the PANI/TiO2 film was 3.18 eV. The photocatalytic property of the film was evaluated by the degradation of rhodamine-B. It was found that 67.1% and 83.2% of rhodamine-B could be degraded under sunlight and UV irradiation within 120 min using the PANI/TiO2 composite t-tim as photocatalyst.
文摘The nanotitanium dioxide (TiO2) photocatalytic and porous ceramic filtering technique is one of the advanced methods to effectively treat organic wastewater. The TiO2 sol doped with Fe^3+ ions was prepared by sol-gel processing. The influences of the process conditions of coating nanophotocatalytic material- Fe^3+-TiO2 film on the surface of porous ceramic filter by dipping-lift method on the performance of porous ceramic filter were studied. The porous ceramic filters have two functions at the same time, filtration and photocatalytic degradation. The results of this study showed that the pH and viscosity of the sol, amount of Fe^3+ ions doped as well as the coating times greatly affect the quality of coating film, the performance parameters and the photocatalytic activity of the porous ceramic filter. When the pH of the sol is 3-4, the viscosity is about 6 mPa.S, the amount of doped Fe^3+ ions is about 2.0 g/L, the porous ceramic filter has been shown to have the best filtering performance and photocatalytic activity. In this condition, the porosity of porous ceramic is about 42.5%, the pore diameter is 8-10μm. The degradation of methyl-orange is 74.76% under lighting for 120 rain.
文摘In order to clarify the respective role of the UV light, catalyst, external bias as well as their combined effects on the photodegradation process and to clarify the photocatalytic mechanism under different experimental conditions, a series of experiments were conducted in a shallow pond photoreactor with an effective volume of 100 mL using TiO 2/Ti thin film prepared by anodization as photocatalyst. A 300W UV lamp( E max =365 nm)was used as side light source. The effect of light intensity on photocatalysis was also conducted. The results show that photocatalytic oxidation is an effective method for phenol removal from waters. The degradation rate can be improved by applying an anodic bias to the TiO 2/Ti film electrode, phenol can not be decomposed under only 365 nm UV light irradiation even in the presence of hydrogen peroxide. In the range of our research, the phenol removal rate can be described in terms of pseudo first order kinetics.
基金Funded by Key Scientific and Technological Items of the Ministry of Education (No.99087) .
文摘TiO2-SiO2 thin films have been prepared on slide glass substrates by sol-gel method, and the effect of SiO2 additive on photo-generated hydrophilicity of TiO2 thin film was investigated by measuring the contact angle of water, the microstructure, the transmittance, the photocatalytic activity and the specific surface area . The results showed that 10mol% of SiO2 additive was the most effective for decreasing contact angle of water. The SiO2 additive of less than 30mol% has a suppressive effect on the crystal growth of anatase in calcinations, resulting in a large surface area. Consequently, the super-hydrophilicity was improved.
文摘TiO2 mesocrystals can considerably enhance charge separation owing to their oriented superstructures,with fewer internal defects and porous properties providing more active sites.In this work,we prepared TiO2 mesocrystal films by a direct annealing method.The morphology and crystal phase of the film were controlled by adjusting the ratio of NH4F and the calcination temperature.Moreover,we found that Au nanoparticles loaded on a TiO2 mesocrystal film enabled highly efficient visible light photocatalytic properties.The photocatalytic activities were studied by hydrogen generation and photoreduction of Cr(VI).This work represents a considerable advance in the development and application of the TiO2 mesocrystals.
文摘TiO2 is a promising photocatalyst. However, the low photocatalytic efficiency calls for the modification of TiO2. Metal- and nonmetal-doping of TiO2 have been proved to be effective ways to enhance photocatalytic properties. This review provides a deep insight into the understanding of the metal- and nonmetal-doped TiO2 photocatalysts. This article begins with the introduction of the crystal structures of TiO2 and applications of TiO2 materials. We then reviewed the doped-TiO2 system in two categories: (1) metal-doped TiO2 photocatalysts system, and (2) nonmetal-doped TiO2 photocatalysts system. Both experimental results and theoretical analyses are elaborated in this section. In the following part, for the advantages of TiO2 thin films over particles, various preparation methods to obtain TiO2 thin films are briefly discussed. Finally, this review ends with a concise conclusion and outlook of new trends in the development of TiO2-based photocatalysts.
文摘Ti02 coatings on natural feather zeolite are respectively prepared by a collosol (Sol-gel) method and two powder coating methods with deionizod water or dehydrated ethanol as a dispersant. During degradation of orthomono- chlorphenol solutions by ultraviolet, the strong adsorption capability of the zeolite results in increased concentration of substrate on its surface. The Ti(h film coated on feather zeolite further enhances the photocatalytic activity. The TiO~ film on the zeolite prepared by the Sol-gel method is found more effective as a catalyst than that by two powder coating methods.
文摘We prepared TiO 2(anatase) and Sn doped TiO 2 nanoparticlate film by Plasma enhanced Chemical Vapor Deposition(PECVD) method. XRD and XPS experiments showed that Sn was doped into the lattice of TiO 2 with a ratio of n (Sn)∶ n (Ti)=1∶10 . Sn doping largely enhanced the photocatalytic activity of TiO 2 film for phenol degradation. The enhancement in photoactivity by doping was discussed, based on the characterization with AFM, FTIR and EFISPS. Sn doping produced localized level of Sn 4+ in the band gap of TiO 2, about 0.4 eV below the conduction band, which could capture photogenerated electrons and reduce O 2 adsorbed on the surface of TiO 2 film, thus accelerated the photocatalytic reaction.