期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Electrochemical oxidation of rhodamine B by PbO_2/Sb-SnO_2/TiO_2 nanotube arrays electrode 被引量:11
1
作者 Jia Wu Kai Zhu +1 位作者 Hao Xu Wei Yan 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第6期917-927,共11页
A PbO2/Sb-SnO2/TiO2 nanotube array composite electrode was successfully synthesized and its electrochemical oxidation properties were investigated.Field-emission scanning electron microscopy(FE-SEM)and X-ray diffracti... A PbO2/Sb-SnO2/TiO2 nanotube array composite electrode was successfully synthesized and its electrochemical oxidation properties were investigated.Field-emission scanning electron microscopy(FE-SEM)and X-ray diffraction(XRD)results showed that the PbO2 coating was composed of anα-PbO2 inner layer and aβ-PbO2 outer layer.Accelerated life measurement indicated that the composite electrode had a lifetime of 815 h.Rhodamine B(RhB)was employed as a model pollutant to analyze the electrocatalytic activity of the electrode.The effects of initial RhB concentration,current density,initial pH,temperature,and chloride ion concentration on the electrochemical oxidation were investigated in detail.Inductively coupled plasma atomic emission spectroscopy(ICP-AES)results suggested that the concentration of leached Pb^2+in the electrolyte during the electrocatalytic oxidation process can be neglected.Finally,the degradation mechanism during the electrocatalytic oxidation process was proposed based on the results of solid-phase micro-extraction-gas chromatography-mass spectrometry(SPME-GC-MS).The high electrocatalytic performance of the composite electrode makes it a promising anode for the treatment of organic pollutants in aqueous solution. 展开更多
关键词 tio2 nanotube array Electrochemical oxidation Rhodamine B Degradation mechanism
下载PDF
Enhanced Photoelectrochemical Properties of Cu_2O-loaded Short TiO_2 Nanotube Array Electrode Prepared by Sonoelectrochemical Deposition 被引量:6
2
作者 Yanbiao Liu Haibin Zhou +4 位作者 Jinhua Li Hongchong Chen Di Li Baoxue Zhou Weimin Cai 《Nano-Micro Letters》 SCIE EI CAS 2010年第4期277-284,共8页
Copper and titanium remain relatively plentiful in earth crust.Therefore,using them in solar energy conversion technologies are of significant interest.In this work,cuprous oxide(Cu2O)-modified short TiO2 nanotube a... Copper and titanium remain relatively plentiful in earth crust.Therefore,using them in solar energy conversion technologies are of significant interest.In this work,cuprous oxide(Cu2O)-modified short TiO2 nanotube array electrode was prepared based on the following two design ideas:first,the short titania nanotubes obtained from sonoelectrochemical anodization possess excellent charge separation and transportation properties as well as desirable mechanical stability;second,the sonoelectrochemical deposition technique favours the improvement in the combination between Cu2O and TiO2 nanotubes,and favours the dispersion of Cu2O particles.UV-Vis absorption and photo-electronchemical measurements proved that the Cu2O coating extended the visible spectrum absorption and the solar spectrum-induced photocurrent response.Under AM1.5 irradiation,the photocurrent density of the composite electrode(i.e.sonoelectrochemical deposition for 5 min) was more than 4.75 times as high as the pure nanotube electrode.Comparing the photoactivity of the Cu2O/TiO2 electrode obtained using sonoelectrochemical deposition with others that synthesized using plain electrochemical deposition,the photocurrent density of the former electrode was 2.2 times higher than that of the latter when biased at 1.0 V(vs.Ag/AgCl).The reproducible photocurrent response under intermittent illumination demonstrated the excellent stability of the composite electrode.Such kind of composite electrode material will have many potential applications in solar cell and other fields. 展开更多
关键词 CU2O Short tio2 nanotube array Sonoelectrochemical deposition
下载PDF
200-nm long TiO_2 nanorod arrays for efficient solid-state Pb S quantum dot-sensitized solar cellsR 被引量:1
3
作者 Zhengguo Zhang Chengwu Shi +3 位作者 Kai Lv Chengfeng Ma Guannan Xiao Lingling Ni 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第4期1214-1218,共5页
To ensure the infiltration of spiro-OMeTAD into the quantum dot-sensitized photoanode and to consider the limit of the hole diffusion length in the spiro-OMeTAD layer, a rutile TiO2 nanorod array with a length of 200 ... To ensure the infiltration of spiro-OMeTAD into the quantum dot-sensitized photoanode and to consider the limit of the hole diffusion length in the spiro-OMeTAD layer, a rutile TiO2 nanorod array with a length of 200 nm, a diameter of 20 nm and an areal density of 720 ram 2 was successfully prepared using a hydrothermal method with an aqueous-grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 ℃ for 75 min. PbS quantum dots were deposited by a spin coating-assisted successive ionic layer adsorption and reaction (spin-SILAR), and all solid-state PbS quantum dot-sensitized TiO2 nanorod array solar cells were fabricated using spiro-OMeTAD as electrolytes. The results revealed that the average crystal size of PbS quantum dots was -78 nm using Pb(NO3)2 as the lead source and remain unchanged with the increase of the number of spin-SILAR cycles. The all solid-state PbS quantum dot-sensitized TiO2 nanorod array solar cells with spin-SILAR cycle numbers of 20, 30 and 40 achieved the photoelectric conversion efficiencies of 3.74%, 4.12% and 3.11%, respectively, under AM 1.5 G illumination (100 mW/cm2). 展开更多
关键词 tio2 nanomd array PbS quantum dot Spiro-OMeTAD All solid-state sensitized solar cell
下载PDF
Synthesis and application of TiO_2 single-crystal nanorod arrays grown by multicycle hydrothermal for dye-sensitized solar cells 被引量:1
4
作者 朱建晶 赵宇龙 +2 位作者 朱磊 顾修全 强颖怀 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第4期629-633,共5页
TiO2 is a wide band gap semiconductor with important applications in photovoltaic cells. Vertically aligned Tit2 nanorod arrays (NRs) are grown on the fluorine-doped tin oxide (FTO) substrates by a multicycle hydr... TiO2 is a wide band gap semiconductor with important applications in photovoltaic cells. Vertically aligned Tit2 nanorod arrays (NRs) are grown on the fluorine-doped tin oxide (FTO) substrates by a multicycle hydrothermal synthesis process. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and selected-area electron diffraction (SAED). It is found that dye-sensitized solar cells (DSSCs) assembled by the as-prepared Tit2 single-crystal NRs exhibit different trends under the condition of different nucleation and growth concentrations. Optimum cell performance is obtained with high nucleation concentration and low growth cycle concentration. The efficiency enhancement is mainly attributed to the improved specific surface area of the nanorod. 展开更多
关键词 tio2 single-crystal nanorod array mild multicycle hydrotherrnal dye-sensitized solar cell lowgrowth cycle concentration
下载PDF
Composite Semiconductor Quantum Dots CdSe/CdS Co-sensitized TiO_2 Nanorod Array Solar Cells 被引量:1
5
作者 汪竞阳 章天金 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第5期876-880,共5页
CdSe/CdS semiconductor quantum dots co-sensitized TiO2 nanorod array was fabricated on the transparent conductive fluorine-doped tin oxide (FTO) substrate using the hydrothermal and successive ionic layer adsorption... CdSe/CdS semiconductor quantum dots co-sensitized TiO2 nanorod array was fabricated on the transparent conductive fluorine-doped tin oxide (FTO) substrate using the hydrothermal and successive ionic layer adsorption and reaction (SILAR) process. The structural and morphological properties of the samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The results indicate that CdSe/CdS QDs are uniformly coated on the surface of the TiO2 nanorods. The shift of light absorption edge was monitored by taking UV-visible absorption spectra. Compared with the absorption spectra of the TiO2 nanorod array, deposition of CdSe/CdS QDs shifts the absorption edge to the higher wavelength. The enhanced light absorption in the visible-light region of CdSe/CdS/TiO2 nanorod array indicates that CdSe/CdS layers can act as co-sensitizers in quantum dots sensitized solar cells (QDSSCs). By optimizing the CdSe layer deposition cycles, a photocurrent of 5.78 mA/cm2, an open circuit photovoltage of 0.469 V and a conversion efficiency of 1.34 % were obtained under an illumination of 100 mw/cm2. 展开更多
关键词 quantum dots tio2 nanorod array solar cells photovoltaic performance
下载PDF
420nm thick CH_3NH_3PbI_(3-x)Br_x capping layers for efficient TiO_2 nanorod array perovskite solar cells
6
作者 李龙 史成武 +3 位作者 邓新莲 王艳青 肖冠南 倪玲玲 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第1期104-108,共5页
The rutile TiO2 nanorod arrays with 240 nm in length, 30 nm in diameter, and 420 btm 2 in areal density were prepared by the hydrothermal method to replace the typical 200-300 nm thick mesoporous TiO2 thin films in pe... The rutile TiO2 nanorod arrays with 240 nm in length, 30 nm in diameter, and 420 btm 2 in areal density were prepared by the hydrothermal method to replace the typical 200-300 nm thick mesoporous TiO2 thin films in perovskite solar cells. The CH3NH3PbI3 xBrx capping layers with different thicknesses were obtained on the TiO2 nanorod arrays using different concentration PbI2.DMSO complex precursor solutions in DMF and the photovoltaic performances of the corresponding solar cells were compared. The perovskite solar cells based on 240 nm long TiO2 nanorod arrays and 420 nm thick CH3NH3PbI3 xBrx capping layers showed the best photoelectric conversion efficiency (PCE) of 15.56% and the average PCE of 14.93 ± 0.63% at the relative humidity of 50%-54% under the illumination of simulated AM 1.5 sunlight (100 mW.cm-2). 展开更多
关键词 rutile tio2 nanorod array CH3NH3PbI3 xBrx capping layer perovskite solar cell
下载PDF
Transient competition between photocatalysis and carrier recombination in TiO_2 nanotube film loaded with Au nanoparticles 被引量:1
7
作者 邵珠峰 杨延强 +1 位作者 刘树田 王强 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第9期298-305,共8页
Highly ordered TiO2 nanotube array (TNA) films are fabricated by using an anodic oxidation method. Au nanoparticles (NPs) films are decorated onto the top of TNA films with the aid of ion-sputtering and thermal an... Highly ordered TiO2 nanotube array (TNA) films are fabricated by using an anodic oxidation method. Au nanoparticles (NPs) films are decorated onto the top of TNA films with the aid of ion-sputtering and thermal annealing. An enhanced photocatalytic activity under ultraviolet C (UVC, 266 nm) light irradiation is obtained compared with that of the pristine TNA, which is shown by the steady-state photoluminescence (PL) spectra. Furthermore, a distinct blue shift in the nanosecond time-resolved transient photoluminescence (NTRT-PL) spectra is observed. Such a phenomenon could be well explained by considering the competition between the surface photocatalytic process and the recombination of the photo-generated carriers. The enhanced UV photocatalytic activities of the Au-TNA composite are evaluated through photo-degradation of methyl orange (MO) in an aqueous solution with ultraviolet-visible absorption spectrometry. Our current work may provide a simple strategy to synthesize defect-related composite photocatalytic devices. 展开更多
关键词 tio2 nanotube array film Au nanoparticles oxygen vacancies photocatalytic activity
下载PDF
Preparation and Electrochemical Application of Praseodymium Modified TiO2-NTs/SnO2-Sb Anode by Cyclic Voltammetry Method 被引量:1
8
作者 王燕 陈迓宾 +1 位作者 朱怀工 张旭斌 《Transactions of Tianjin University》 EI CAS 2016年第3期247-253,共7页
A Pr-doped TiO2-NTs/SnO2-Sb electrode was prepared by a simple method, cyclic voltarnmetry (CV). The methyl orange (MO)aqueous solution was selected as a simulated wastewater. The ordered microstructural TiO2-NTs ... A Pr-doped TiO2-NTs/SnO2-Sb electrode was prepared by a simple method, cyclic voltarnmetry (CV). The methyl orange (MO)aqueous solution was selected as a simulated wastewater. The ordered microstructural TiO2-NTs substrate was synthesized by an electrochemical method to obtain large specific surface area and high space utilization. The phase structure, electrode surface morphology and electrochemical properties of electrodes were characterized by XRD, SEM and electrochemical technology, respectively. The results showed that praseo- dymium oxide was successfully doped into the SnOz-Sb film by CV method. Due to the doped Pr, the oxygen evo- lution potential increased from 2.25 V to 2.40 V. The degradation of MO was investigated by UV-vis. The Ct/C0(φ) was studied as a function to obtain the optimal parameters, such as the amount of doped Pr, current density and initial dye concentration. In addition, the degradation process followed pseudo-first-order reaction kinetics and the rate constant was 0.099 3 min-1. The result indicated that the introduction of Pr reduced the formation of oxygen vacancies or enhanced the formation of adsorbed hydroxyl radical groups on the surface, thus leading to better activity and stability. 展开更多
关键词 praseodymium doping cyclic voltammetry method degradation methyl orange tio2 nanotube array
下载PDF
Phosphomolybdic acid-modified highly organized TiO2 nanotube arrays with rapid photochromic performance 被引量:3
9
作者 Yuanyuan Wei Bing Han +1 位作者 Zhaojun Dong Wei Feng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第9期1951-1958,共8页
TiO2 nanotube arrays were prepared by means of an electrochemical anodization technique in an organic electrolyte solution doped with polyvinyl pyrrolidone (PVP) and were subsequently modified with phosphomolybdic aci... TiO2 nanotube arrays were prepared by means of an electrochemical anodization technique in an organic electrolyte solution doped with polyvinyl pyrrolidone (PVP) and were subsequently modified with phosphomolybdic acid (PMoA) to obtain PMoA/TiO2 nanotube arrays. The microstructure and photochromic properties were investigated via X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-vis), and X-ray photoelectron spectroscopy (XPS). The results indicated that the Keggin structure of PMoA and the nanotube structure of TiO2 were not destroyed, and there was a strong degree of interaction between PMoA and TiO2 at the biphasic interface with lattice interlacing during the compositing process. The XPS results further indicated that there was a change in the chemical microenvironment during the formation process of the composite, and a new charge transfer bridge was formed through the Mo-O-Ti bond. Under visible light irradiation, the colorless PMoA/TiO2 nanotube array quickly turned blue and exhibited a photochromic response together with reversible photochromism in the presence of H2O2. After visible light irradiation for 60s, the appearance of Mo^5+ species in the XPS spectra indicated a photoreduction process in accordance with a photoinduced electron transfer mechanism. 展开更多
关键词 Phosphomolybdic ACID tio2 NANOTUBE array RAPID PHOTOCHROMIC PERFORMANCE
原文传递
Unveiling the controversial mechanism of reversible Na storage in TiO2 nanotube arrays: Amorphous versus anatase TiO2 被引量:2
10
作者 Federico Bella Ana B. Munoz-Garcia +4 位作者 Giuseppina Meligrana Andrea Lamberti Matteo Destro Michele Pavone Claudio Gerbaldi 《Nano Research》 SCIE EI CAS CSCD 2017年第8期2891-2903,共13页
Due to their inherent safety, low cost, and structural stability, TiO2 nanostructures represent a suitable choice as anode materials in sodiumion batteries. In the recent years, various hypotheses have been proposed r... Due to their inherent safety, low cost, and structural stability, TiO2 nanostructures represent a suitable choice as anode materials in sodiumion batteries. In the recent years, various hypotheses have been proposed regarding the actual mechanism of the reversible insertion of sodium ions in the TiO2 structure, and previous reports are often controversial in this respect. Interestingly, when tested as binder- and conducting additive-free electrodes in laboratory-scale sodium cells, amorphous and crystalline (anatase) TiO2 nanotubular arrays obtained by simple anodic oxidation exhibit peculiar and intrinsically different electrochemical responses. In particular, after the initial electrochemical activation, anatase TiO2 shows excellent rate capability and very stable long-term cycling performance with larger specific capacities, and thus a clearly superior response compared with the amorphous counterpart. To obtain deeper insight, the present materials are thoroughly characterized by scanning electron microscopy and ex situ X-ray diffraction, and the insertion of sodium ions in the TiO2 bulk phases is systematically modeled by density functional theory calculations. The present results may contribute to the development of more systematic screening approaches to identify suitable active materials for highly efficient sodium-based energy storage systems. 展开更多
关键词 sodium battery tio2 nanotube array ANODE modeling insertion mechanism
原文传递
An Energy-Efficient Electrochemical Method for CuO-TiO_2 Nanotube Array Preparation with Visible-Light Responses
11
作者 Haijin Liu Yingling Wang +4 位作者 Guoguang Liu Yuan Ren Nan Zhang Gang Wang Tong Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第1期149-155,共7页
A rapid and energy-efficient method was presented for preparing CuO-TiO2 nanotube arrays. TiO2 nanotube arrays were first prepared by anodic oxidation using titanium anode and platinum cathode. Then, the formed TiO2 n... A rapid and energy-efficient method was presented for preparing CuO-TiO2 nanotube arrays. TiO2 nanotube arrays were first prepared by anodic oxidation using titanium anode and platinum cathode. Then, the formed TiO2 nanotube arrays and Pt were used as cathode and anode, respectively, for subsequent formation of CuO-TiO2 nanotube arrays, through an electro- chemical process in a solution of 0.1 mol/L CuSO4. The morphology and composition of the CuO-TiO2 nanotube arrays were characterized using field-emission scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and UV-Vis diffusion reflection spectroscopy (UV-Vis DRS). XPS and XRD analyses suggested that the Cu element in the nanotubes existed in CuO form, and its content changed along with the voltage during the second electrochemical process. The photocatalytic activities of the CuO-TiO2 nanotube arrays were evaluated by the degradation of a model dye, rhodamine B. The results showed that Cu incorporation aroused wide visible-light adsorption and improved the photocatalytic efficiency of TiO2 nanotube arrays significantly under visible-light irradiation. The stability of the CuO-TiO2 nanotube arrays was also detected. 展开更多
关键词 CUO tio2 nanotube array PHOTOCATALYSIS Rhodamine B
原文传递
Effect of MWCNT Inclusion in TiO_2 Nanowire Array Film on the Photoelectrochemical Performance
12
作者 Menglei Chang Liangpeng Wu +1 位作者 Xinjun Li Wei Xu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2012年第7期594-598,共5页
Rutile TiO2 nanowire array films with multi-walled carbon nanotube (MWCNT) inclusion perpendicularly grown on fluorine-doped tin oxide (FTO) substrate were prepared by a facile hydrothermal method. The absorption ... Rutile TiO2 nanowire array films with multi-walled carbon nanotube (MWCNT) inclusion perpendicularly grown on fluorine-doped tin oxide (FTO) substrate were prepared by a facile hydrothermal method. The absorption edges of the TiO2 nanowire array films are blue-shifted with increasing MWCNT content. The resistance of the TiO2 nanowire array film is decreased by MWCNT inclusion. The optimum TiO2/MWCNT molar ratio in the feedstock is 1:0.1. For the TiO2 nanowire array film with MWCNT inclusion served as electrode in dye-sensitized solar cell (DSSC), an overall 194% increase of photoelectric conversion efficiency has been achieved. 展开更多
关键词 tio2 nanowire array MWCNT inclusion Hydrothermal synthesis PHOTOELECTROCHEMICAL Dye-sensitized solar cell
原文传递
Fabrication, Characterization and Optical Properties of TiO2 Nanotube Arrays on Boron-doped Diamond Film Through Liquid Phase Deposition
13
作者 YUAN Jujun LI Hongdong +5 位作者 WANG Qiliang CHENG Shaoheng ZHANG Xianke YU Huajun ZHU Xiurong XIE Yingmao 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2014年第1期18-22,共5页
TiO2 nanotube(TiNT) arrays were deposited on boron-doped diamond films by a liquid-phase deposition method with ZnO nanorod arrays as the template.The different morphologies of TiNTs have been obtained by controllin... TiO2 nanotube(TiNT) arrays were deposited on boron-doped diamond films by a liquid-phase deposition method with ZnO nanorod arrays as the template.The different morphologies of TiNTs have been obtained by controlling the morphology of ZnO template.The X-ray diffraction and energy-dispersive X-ray analysis show that the ZnO nanorod array template has been removed in the TiNTs formation process.The crystalline quality of the TiNTs is improved by increasing the annealing temperature.The band gap of the TiNTs is about 3.25 eV estimated by the UV-Vis absorption spectroscopy,which is close to the value of bulk TiO2.In the photoluminescence spectrum,a broad visible emission in a range of ca.550-750 nm appears due to the surface oxygen vacancies and defects. 展开更多
关键词 tio2 nanotube array Boron doped diamond Lquid phase deposition Optical property
原文传递
Enhanced Efficiency of Dye-sensitized Solar Cells Using rGO@TiO2 Nanotube Hybrids 被引量:1
14
作者 LIU Rui QIAO Yingjie +2 位作者 SONG Yingjin SONG Kehan LIU Chuan 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2018年第2期269-273,共5页
We established a novel strategy for the synthesis of reduced graphene oxide(rGO)@TiO2 nanotube hybrids using an 18 W UV-assisted photo-catalytic reduction method for utilization as photo-anode of dye-sensitized sola... We established a novel strategy for the synthesis of reduced graphene oxide(rGO)@TiO2 nanotube hybrids using an 18 W UV-assisted photo-catalytic reduction method for utilization as photo-anode of dye-sensitized solar cells(DSSCs). The photo-conversion efficiency of DSSCs was significantly enhanced after the addition of rGO, and in addition, the photo-anode showed decreased internal resistance. Analysis of rGO@TiO2 hybrids by transmissions scanning electron microscopy(TEM), X-ray diffraction(XRD), Raman spectra, N2 adsorption and desorption, atomic force microscopy(AFM) and X-ray photoelectron speetroscopy(XPS) demonstrates that the rGO modified TiO2 nanotubes can increase the short-circuit current and the conversion efficiency of dye-sensitized solar cells. The efficiency is improved by almost two folds as much compared to those of the bare TiO2 nanotubes. 展开更多
关键词 tio2 nanotube array Reduced graphene oxide(rGO) Hybrid Dye-sensitized solar eell(DSSC)
原文传递
CdHgTe Quantum Dots Sensitized Solar Cell with Using of Titanium Dioxide Nanotubes
15
作者 M. Y. Feteha M. Ameen 《Journal of Power and Energy Engineering》 2013年第5期67-72,共6页
The sensitization of TiO2 nanotubes with CdHgTe quantum dots (QDs) was applied by using the direct dispersion technique. The CdHgTe-QDs were fabricated with different Hg% ratio in organic medium for controlling their ... The sensitization of TiO2 nanotubes with CdHgTe quantum dots (QDs) was applied by using the direct dispersion technique. The CdHgTe-QDs were fabricated with different Hg% ratio in organic medium for controlling their particle size. While TiO2 nanotubes (NTs) were fabricated by anodization technique. The QDs and NTs were characterized using SEM, TEM and UV-VIS spectrophotometer. In this work, the photovoltaic parameters of the quantum dots sensitized solar cell (QDSSC) depend mainly on the Hg% ratio in the QDs. The most efficient QDSSC was obtained at 25% of Hg ratio with Jsc of 4 mA/cm2, Voc of 0.63 V, FF of 0.32 and efficiency of 0.81%. 展开更多
关键词 SOLAR Cells QUANTUM DOTS nano-tubes tio2 SENSITIZAtioN
下载PDF
A titanium dioxide nanorod array as a high-affinity nano-bio interface of a microfluidic device for efficient capture of circulating tumor cells 被引量:3
16
作者 Jichuan Qiu Kun Zhao +7 位作者 Linlin Li Xin Yu Weibo Guo Shu Wang Xiaodi Zhang Caofeng Pan Zhong Lin Wang Hong Liu 《Nano Research》 SCIE EI CAS CSCD 2017年第3期776-784,共9页
Nanomaterials show promising opportunities to address clinical problems (such as insufficient capture of circulating tumor cells; CTCs) via the high surface area-to-volume ratio and high affinity for biological cell... Nanomaterials show promising opportunities to address clinical problems (such as insufficient capture of circulating tumor cells; CTCs) via the high surface area-to-volume ratio and high affinity for biological cells. However, how to apply these nanomaterials as a nano-bio interface in a microfluidic device for efficient CTC capture with high specificity remains a challenge. In the present work, we first found that a titanium dioxide (TiO2) nanorod array that can be conveniently prepared on multiple kinds of substrates has high affinity for tumor cells. Then, the TiO2 nanorod array was vertically grown on the surface of a microchannel with hexagonally patterned Si micropillars via a hydrothermal reaction, forming a new kind of a micro-nano 3D hierarchically structured microfluidic device. The vertically grown TiO2 nanorod array was used as a sensitive nano-bio interface of this 3D hierarchically structured microfluidic device, which showed high efficiency of CTC capture (76.7% ± 7.1%) in an artificial whole-blood sample. 展开更多
关键词 tio2 nanorod array circulating tumor cell microfluidic device nano-bio interface 3D hierarchical structure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部