Nonlinear optical (NLO) properties of anatase TiO2 with nanostructures of nanopaxticle (NP), nanowire (NW) and annealed nanowire (NWA) are studied by open-aperture and closed-aperture Z-scan techniques with a ...Nonlinear optical (NLO) properties of anatase TiO2 with nanostructures of nanopaxticle (NP), nanowire (NW) and annealed nanowire (NWA) are studied by open-aperture and closed-aperture Z-scan techniques with a fem- tosecond pulsed laser at wavelengths of 532 nm and 780 nm simultaneously. At 532 nm, when increasing excitation intensity, NLO absorption of TiO2 NPs transforms from saturable absorption to reverse-saturable absorption. However, NWs and NWAs exhibit the opposite change. At 780nm, all samples show reverse-saturable absorption, but have different sensitivities to excitation intensity. Due to the larger surface-to-volume ratio of NPs and less defects of NWAs by annealing, nonlinear optical absorption coet^icients follow the order NPs≥ NWs≥ NWAs. The results also show that these shape and annealing effects axe dominant at low excitation intensity, but do not exhibit at the high excitation intensity. The NLO refractive index of NPs shows a positive linear relationship with the excitation intensity, whereas NW and NWAs exhibit a negative linear relationship. The results could provide some foundational guidance to applications of anatase TiO2 in optoelectronic devices or other aspects.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11404410 and 11504105
文摘Nonlinear optical (NLO) properties of anatase TiO2 with nanostructures of nanopaxticle (NP), nanowire (NW) and annealed nanowire (NWA) are studied by open-aperture and closed-aperture Z-scan techniques with a fem- tosecond pulsed laser at wavelengths of 532 nm and 780 nm simultaneously. At 532 nm, when increasing excitation intensity, NLO absorption of TiO2 NPs transforms from saturable absorption to reverse-saturable absorption. However, NWs and NWAs exhibit the opposite change. At 780nm, all samples show reverse-saturable absorption, but have different sensitivities to excitation intensity. Due to the larger surface-to-volume ratio of NPs and less defects of NWAs by annealing, nonlinear optical absorption coet^icients follow the order NPs≥ NWs≥ NWAs. The results also show that these shape and annealing effects axe dominant at low excitation intensity, but do not exhibit at the high excitation intensity. The NLO refractive index of NPs shows a positive linear relationship with the excitation intensity, whereas NW and NWAs exhibit a negative linear relationship. The results could provide some foundational guidance to applications of anatase TiO2 in optoelectronic devices or other aspects.