Three groups of three-dimensional (3D) TiO2 woodpile electromagnetic gap materials with tailed rheological properties were developed for direct-written fabrication. Appropriate amount of polyethyleneimine (PEI) di...Three groups of three-dimensional (3D) TiO2 woodpile electromagnetic gap materials with tailed rheological properties were developed for direct-written fabrication. Appropriate amount of polyethyleneimine (PEI) dispersants allow the preparation of TiO2 inks with a high solid content of 42 vol.%, which enables them to flow through the nozzles easily. The inks exhibit pseudoplastic behavior. The measured microwave characteristics of the results agree well with simulations based on plane wave expansion (PWE).展开更多
PtRu supported on TiO2-embedded carbon nanofibers(PtRu/TECNF),which was recently reported as a highly-active catalyst for methanol oxidation,was applied to a direct methanol fuel cell(DMFC),and the power generation pe...PtRu supported on TiO2-embedded carbon nanofibers(PtRu/TECNF),which was recently reported as a highly-active catalyst for methanol oxidation,was applied to a direct methanol fuel cell(DMFC),and the power generation performance was compared to that using the commercial PtRu/C.Before the comparison,the effect of the catalyst loading on the power density of the DMFC was investigated using PtRu(18 wt%)/TECNF.The DMFC power density showed a maximum at about a 1.5 mg cm2 PtRu loading that corresponds to about an 80 mm layer thickness.A catalyst layer thicker than this value reduced the power density probably due to the concentration overvoltage.The PtRu content in the PtRu/TECNF was then increased to 30 wt%or more to reduce the layer thickness and to increase the power density.The DMFC performance was compared to that of different anode catalysts at a 1 mg cm2 PtRu loading.The power density was maximized using the PtRu30 wt%/TECNF,which showed a 173 mW cm2 at 353 K and had 66 mm layer thick,that was 26%higher than that of commercial PtRu/C.The current–voltage curve of the DMFC with the PtRu/TECNF suggested an improved mass transport overvoltage,but a little improvement in the activation one despite using the catalyst with about a 2 times higher activity compared to that of the commercial PtRu/C.This was attributed to the lower Pt utilization of the nanofiber catalyst layer.展开更多
文摘Three groups of three-dimensional (3D) TiO2 woodpile electromagnetic gap materials with tailed rheological properties were developed for direct-written fabrication. Appropriate amount of polyethyleneimine (PEI) dispersants allow the preparation of TiO2 inks with a high solid content of 42 vol.%, which enables them to flow through the nozzles easily. The inks exhibit pseudoplastic behavior. The measured microwave characteristics of the results agree well with simulations based on plane wave expansion (PWE).
基金the Element Innovation Project,Ministry of Education,Japan,and by KAKENHI(26289300).
文摘PtRu supported on TiO2-embedded carbon nanofibers(PtRu/TECNF),which was recently reported as a highly-active catalyst for methanol oxidation,was applied to a direct methanol fuel cell(DMFC),and the power generation performance was compared to that using the commercial PtRu/C.Before the comparison,the effect of the catalyst loading on the power density of the DMFC was investigated using PtRu(18 wt%)/TECNF.The DMFC power density showed a maximum at about a 1.5 mg cm2 PtRu loading that corresponds to about an 80 mm layer thickness.A catalyst layer thicker than this value reduced the power density probably due to the concentration overvoltage.The PtRu content in the PtRu/TECNF was then increased to 30 wt%or more to reduce the layer thickness and to increase the power density.The DMFC performance was compared to that of different anode catalysts at a 1 mg cm2 PtRu loading.The power density was maximized using the PtRu30 wt%/TECNF,which showed a 173 mW cm2 at 353 K and had 66 mm layer thick,that was 26%higher than that of commercial PtRu/C.The current–voltage curve of the DMFC with the PtRu/TECNF suggested an improved mass transport overvoltage,but a little improvement in the activation one despite using the catalyst with about a 2 times higher activity compared to that of the commercial PtRu/C.This was attributed to the lower Pt utilization of the nanofiber catalyst layer.