Nanosized metal (Pt or Pd)-decorated TiO2 nanofibers (NFs) were synthesized by a wet impregnation method. CdSe quantum dots (QDs) were then anchored onto the metal-decorated TiO2 NFs. The photocatalytic performa...Nanosized metal (Pt or Pd)-decorated TiO2 nanofibers (NFs) were synthesized by a wet impregnation method. CdSe quantum dots (QDs) were then anchored onto the metal-decorated TiO2 NFs. The photocatalytic performance of these catalysts was tested for activation and reduction of CO2 under UV-B light. Gas chromatographic analysis indicated the formation of methanol, formic acid, and methyl formate as the primary products. In the absence of CdSe QDs, Pd-decorated TiO2 NFs were found to exhibit enhanced performance compared to Pt-decorated TiO2 NFs for methanol production. However, in the presence of CdSe, Pt-decorated TiO2 NFs exhibited higher selectivity for methanol, typically producing -90 ppmg^-1.h^-1 methanol. The CO2 photoreduction mechanism is proposed to take place via a hydrogenation pathway from first principles calculations, which complement the experimental observations.展开更多
As one of the most promising candidates for the third generation solar cells,quantum dots sensitized solar cells(QDSCs) have been comprehensively studied.In this work,we synthesize the CdSe QDs with the absorption ran...As one of the most promising candidates for the third generation solar cells,quantum dots sensitized solar cells(QDSCs) have been comprehensively studied.In this work,we synthesize the CdSe QDs with the absorption range from 450-550 nm,which are suitable to be applied in the QDSCs.Then,we found that the self-assembly(SA) deposition method is superior to the successive ionic layer adsorption and reaction(SILAR) deposition method in the fabrication of the photo anodes.Furthermore,the influence of TiO_2's thickness of the photo anodes to the QDSCs' efficiency has been studied.With the optimized CdSe QDs sensitized photo anodes,the efficiency of the QDSCs can reach 3.38%in this work.展开更多
文摘Nanosized metal (Pt or Pd)-decorated TiO2 nanofibers (NFs) were synthesized by a wet impregnation method. CdSe quantum dots (QDs) were then anchored onto the metal-decorated TiO2 NFs. The photocatalytic performance of these catalysts was tested for activation and reduction of CO2 under UV-B light. Gas chromatographic analysis indicated the formation of methanol, formic acid, and methyl formate as the primary products. In the absence of CdSe QDs, Pd-decorated TiO2 NFs were found to exhibit enhanced performance compared to Pt-decorated TiO2 NFs for methanol production. However, in the presence of CdSe, Pt-decorated TiO2 NFs exhibited higher selectivity for methanol, typically producing -90 ppmg^-1.h^-1 methanol. The CO2 photoreduction mechanism is proposed to take place via a hydrogenation pathway from first principles calculations, which complement the experimental observations.
文摘As one of the most promising candidates for the third generation solar cells,quantum dots sensitized solar cells(QDSCs) have been comprehensively studied.In this work,we synthesize the CdSe QDs with the absorption range from 450-550 nm,which are suitable to be applied in the QDSCs.Then,we found that the self-assembly(SA) deposition method is superior to the successive ionic layer adsorption and reaction(SILAR) deposition method in the fabrication of the photo anodes.Furthermore,the influence of TiO_2's thickness of the photo anodes to the QDSCs' efficiency has been studied.With the optimized CdSe QDs sensitized photo anodes,the efficiency of the QDSCs can reach 3.38%in this work.