In this work, we developed a templated self-assembly approach to fabricate self-supporting Au/TiO2 binary nanoparticles-nanotubes (NPNTs) for the first time. The stable Au/TiO2 nanoparticles colloids were pre-synthe...In this work, we developed a templated self-assembly approach to fabricate self-supporting Au/TiO2 binary nanoparticles-nanotubes (NPNTs) for the first time. The stable Au/TiO2 nanoparticles colloids were pre-synthesized and then deposited onto an AAO template, following by a mild calcination process. Au/TiO2 binary NPNTs can be achieved after removing the AAO template by NaOH solution. In addition, Au/TiO2 NPNTs with different thicknesses and size distributions could be achieved by tailoring the process parameters, such as the molar ratio of AuNPs to TiO2NPs, deposition modes and calcinations conditions. Therefore, these findings made controllable formation of Au/TiO2 NPNTs attractive for promising fabrication methodologies of metal/metal oxides NPNTs.展开更多
基金supports provided by National Natural Science Foundation of China(No. 51104194)Doctoral Fund of Ministry of Education of China(No. 20110191120014)+1 种基金No.43 Scientific Research Foundation for the Returned Overseas Chinese ScholarsState Education Ministry and Fundamental Research Funds for the Central Universities(Nos. CDJZR13130035,CDJZR12248801 and CDJZR12135501.Chongqing University,China)
文摘In this work, we developed a templated self-assembly approach to fabricate self-supporting Au/TiO2 binary nanoparticles-nanotubes (NPNTs) for the first time. The stable Au/TiO2 nanoparticles colloids were pre-synthesized and then deposited onto an AAO template, following by a mild calcination process. Au/TiO2 binary NPNTs can be achieved after removing the AAO template by NaOH solution. In addition, Au/TiO2 NPNTs with different thicknesses and size distributions could be achieved by tailoring the process parameters, such as the molar ratio of AuNPs to TiO2NPs, deposition modes and calcinations conditions. Therefore, these findings made controllable formation of Au/TiO2 NPNTs attractive for promising fabrication methodologies of metal/metal oxides NPNTs.