The simulation by the Monte Carlo method executed by the software PyPENELOPE proved effective to specify the particle propagation characteristics by calculating the absorption fractions, backscattering and transmissio...The simulation by the Monte Carlo method executed by the software PyPENELOPE proved effective to specify the particle propagation characteristics by calculating the absorption fractions, backscattering and transmission of electrons and secondary photons under the incidence of 0.5 to 20 KeV range of primary electrons. More than 99.9% of the primary electrons were transmitted in the 125 nm thick MgO/TiO<sub>2</sub> material at 20 KeV. This occurred because several interactions took place in the transmitted primary irradiation such as characteristic, fluorescence, and bremsstrahlung produced when of the occupation of the KL3, KL2, KM3, and KM2 shell and sub-shell of titanium and magnesium which are the elements with a high atomic number in the material. The transmission particle characteristic of this material is therefore an indicator capable of improving the electrical performance and properties of the sensor.展开更多
A novel lanthanum and sulfur co-doped TiO2 photocatalyst was synthesized by precipitation- dipping method, and characterized by X-ray diffraction(XRD), transmission electron microscopy(TEM) and UV-Vis diffuse refl...A novel lanthanum and sulfur co-doped TiO2 photocatalyst was synthesized by precipitation- dipping method, and characterized by X-ray diffraction(XRD), transmission electron microscopy(TEM) and UV-Vis diffuse reflectance spectroscopy. Compared with the S-doped TiO, La-doped TiO2 and the standard Degussa P25 photocatalysts, the lanthanum and sulfur co-doped TiO2 photocatalyst (the molar percentage of La is 3.0%) calcined at 450 ℃ for 2 h showed the strongest absorption for visible light and highest activities for degradation of reactive blue 19 dye in aqueous solution under visible light(λ〉400 nm) irradiation. It was also discovered that the co-doping of lanthanum and sulfur hindered the aggregation and growth of TiO2 particles, and the doping of lanthanum reduced slightly the phase transition temperature ofTiO2 from anatase to rutile.展开更多
Undoped and Ni–S co-doped mesoporous TiO2 nano materials were synthesized by using sol–gel method.The characteristic features of as prepared catalyst samples were investigated using various advanced spectroscopic an...Undoped and Ni–S co-doped mesoporous TiO2 nano materials were synthesized by using sol–gel method.The characteristic features of as prepared catalyst samples were investigated using various advanced spectroscopic and analytical techniques.The characterization results of the samples revealed that all the samples exhibited anatase phase(XRD),decreasing band gap(2.68 eV)(UV–Vis-DRS),small particle size(9.2 nm)(TEM),high surface area(142.156 m^2·g^-1)(BET),particles with spherical shape and smooth morphology(SEM);there is a frequency shift observed for co-doped sample(FT-IR)and the elemental composition electronic states and position of the doped elements(Ni and S)in the TiO2 lattice analyzed by XPS and EDX.These results supported the photocatalytic degradation of Bismarck Brown Red(BBR)achieved with in 110 min and also exhibited the antibacterial activity on Staphylococcus aureus(MTCC-3160),Pseudomonas fluorescence(MTCC-1688)under visible light irradiation.展开更多
A series of Ce, H3PW12O40 co-doped TiO2 hollow fibers photocatalysts have been prepared by sol-gel method using ammonium ceric nitrate, H3PW12O40 and tetrabutyltitanate as precursors and cotton fibers as template, fol...A series of Ce, H3PW12O40 co-doped TiO2 hollow fibers photocatalysts have been prepared by sol-gel method using ammonium ceric nitrate, H3PW12O40 and tetrabutyltitanate as precursors and cotton fibers as template, followed by calcination at 500 ℃ in N2 atmosphere for 2 h. Scanning electron microscopy, X-ray diffraction, nitrogen adsorption-desorption mea- surements, and UV-Vis spectroscopy are employed to characterize the morphology, crystal structure, surface structure, and optical absorption properties of the samples. The photo- catalytic performance of the samples has been studied by photodegradation phenol in water under UV and visible light irradiation. The results show that the TiO2 fiber materials have hollow structures, and the co-doped TiO2 hollow fibers exhibit higher photocatalytic activities for the degradation of phenol than un-doped, single-doped TiO2 hollow fibers under UV and visible light. In addition, the recyclability of co-doped TiO2 fibers is also confirmed that the TiO2 fiber retains ca. 90% of its activity after being used four times. It is shown that the co-doped TiO2 fibers can be activated by visible light and may be potentially applied to the treatment of water contaminated by organic pollutants. The synergistic effect of Ce and H3PW12O40 co-doping plays an important role in improving the photocatalytic activity.展开更多
Nb and F co-doped anatase TiO2 layers were deposited by low pressure chemical vapor deposition (LPCVD) at pressure of 3 mtorr using titanium-tetra-iso-propoxide (TTIP), O2 and NbF5 as precursor, oxidant and dopant res...Nb and F co-doped anatase TiO2 layers were deposited by low pressure chemical vapor deposition (LPCVD) at pressure of 3 mtorr using titanium-tetra-iso-propoxide (TTIP), O2 and NbF5 as precursor, oxidant and dopant respectively. Resistivity beyond 100 Ωcm for undoped layer was decreased with increasing supply of the dopant and dependent on the supply ratio of O2 to TTIP and decreased to 0.2 Ωcm by the optimization. X-ray fluorescent spectroscopy showed Nb-content in the layer was decreased with the O2-supply ratio. X-ray photo-spectroscopy indicated that F substituted O-site in TiO2 by O2-supply but carbon-contamination and F missing substitution in the O-site were significantly increased by excess O2-supply. Further, it was suggested that the substituted F played an important role to reduce resistivity without significant contribution of O-vacancies. XRD spectra showed F missing substitution in the O-site degraded the crystallinity.展开更多
文摘The simulation by the Monte Carlo method executed by the software PyPENELOPE proved effective to specify the particle propagation characteristics by calculating the absorption fractions, backscattering and transmission of electrons and secondary photons under the incidence of 0.5 to 20 KeV range of primary electrons. More than 99.9% of the primary electrons were transmitted in the 125 nm thick MgO/TiO<sub>2</sub> material at 20 KeV. This occurred because several interactions took place in the transmitted primary irradiation such as characteristic, fluorescence, and bremsstrahlung produced when of the occupation of the KL3, KL2, KM3, and KM2 shell and sub-shell of titanium and magnesium which are the elements with a high atomic number in the material. The transmission particle characteristic of this material is therefore an indicator capable of improving the electrical performance and properties of the sensor.
基金the National Natural Science Foundation of China(No.20677008)the Innovation Foundation of Donghua University for Doctors
文摘A novel lanthanum and sulfur co-doped TiO2 photocatalyst was synthesized by precipitation- dipping method, and characterized by X-ray diffraction(XRD), transmission electron microscopy(TEM) and UV-Vis diffuse reflectance spectroscopy. Compared with the S-doped TiO, La-doped TiO2 and the standard Degussa P25 photocatalysts, the lanthanum and sulfur co-doped TiO2 photocatalyst (the molar percentage of La is 3.0%) calcined at 450 ℃ for 2 h showed the strongest absorption for visible light and highest activities for degradation of reactive blue 19 dye in aqueous solution under visible light(λ〉400 nm) irradiation. It was also discovered that the co-doping of lanthanum and sulfur hindered the aggregation and growth of TiO2 particles, and the doping of lanthanum reduced slightly the phase transition temperature ofTiO2 from anatase to rutile.
基金the University Grants Commission (UGC) for providing BSR fellowship
文摘Undoped and Ni–S co-doped mesoporous TiO2 nano materials were synthesized by using sol–gel method.The characteristic features of as prepared catalyst samples were investigated using various advanced spectroscopic and analytical techniques.The characterization results of the samples revealed that all the samples exhibited anatase phase(XRD),decreasing band gap(2.68 eV)(UV–Vis-DRS),small particle size(9.2 nm)(TEM),high surface area(142.156 m^2·g^-1)(BET),particles with spherical shape and smooth morphology(SEM);there is a frequency shift observed for co-doped sample(FT-IR)and the elemental composition electronic states and position of the doped elements(Ni and S)in the TiO2 lattice analyzed by XPS and EDX.These results supported the photocatalytic degradation of Bismarck Brown Red(BBR)achieved with in 110 min and also exhibited the antibacterial activity on Staphylococcus aureus(MTCC-3160),Pseudomonas fluorescence(MTCC-1688)under visible light irradiation.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.41373127) and Liaon- ing Provincial Natural Science Foundation of China (No.2013020121).
文摘A series of Ce, H3PW12O40 co-doped TiO2 hollow fibers photocatalysts have been prepared by sol-gel method using ammonium ceric nitrate, H3PW12O40 and tetrabutyltitanate as precursors and cotton fibers as template, followed by calcination at 500 ℃ in N2 atmosphere for 2 h. Scanning electron microscopy, X-ray diffraction, nitrogen adsorption-desorption mea- surements, and UV-Vis spectroscopy are employed to characterize the morphology, crystal structure, surface structure, and optical absorption properties of the samples. The photo- catalytic performance of the samples has been studied by photodegradation phenol in water under UV and visible light irradiation. The results show that the TiO2 fiber materials have hollow structures, and the co-doped TiO2 hollow fibers exhibit higher photocatalytic activities for the degradation of phenol than un-doped, single-doped TiO2 hollow fibers under UV and visible light. In addition, the recyclability of co-doped TiO2 fibers is also confirmed that the TiO2 fiber retains ca. 90% of its activity after being used four times. It is shown that the co-doped TiO2 fibers can be activated by visible light and may be potentially applied to the treatment of water contaminated by organic pollutants. The synergistic effect of Ce and H3PW12O40 co-doping plays an important role in improving the photocatalytic activity.
文摘Nb and F co-doped anatase TiO2 layers were deposited by low pressure chemical vapor deposition (LPCVD) at pressure of 3 mtorr using titanium-tetra-iso-propoxide (TTIP), O2 and NbF5 as precursor, oxidant and dopant respectively. Resistivity beyond 100 Ωcm for undoped layer was decreased with increasing supply of the dopant and dependent on the supply ratio of O2 to TTIP and decreased to 0.2 Ωcm by the optimization. X-ray fluorescent spectroscopy showed Nb-content in the layer was decreased with the O2-supply ratio. X-ray photo-spectroscopy indicated that F substituted O-site in TiO2 by O2-supply but carbon-contamination and F missing substitution in the O-site were significantly increased by excess O2-supply. Further, it was suggested that the substituted F played an important role to reduce resistivity without significant contribution of O-vacancies. XRD spectra showed F missing substitution in the O-site degraded the crystallinity.