Hollow B–SiO2@TiO2 composites were prepared by the wet chemical deposition method starting from TiCl4 and hollow B–SiO2 microspheres.TiO2 layers composed of anatase TiO2 nanoparticles were coated on the surfaces of ...Hollow B–SiO2@TiO2 composites were prepared by the wet chemical deposition method starting from TiCl4 and hollow B–SiO2 microspheres.TiO2 layers composed of anatase TiO2 nanoparticles were coated on the surfaces of the hollow B–SiO2 microspheres probably through the formation of Ti—O—Si and Ti—O—B bonds.A great number of—OH groups were also present at the TiO2 coating layers.The presence of Ti—O—Si bonds and Ti—O—B bonds resulted in the formation of defects in the TiO2 coating layers,which decreased the band gap of the TiO2 coating layers to ca.3.0 eV and endowed the TiO2 coating layers with visible light absorption performance.The buoyancy hollow B–SiO2@TiO2 composites exhibited high photocatalytic activities for the degradation of ammonia-nitrogen and green algae.The conversion of ammonia-nitrogen reached 65%when the degradation of ammonia-nitrogen(43 mg·L-1 at pH value of 8)was catalyzed by the B–SiO2@TiO2(100:10)composite under the simulated solar light irradiation at 35°C for 660 min.The green algae(5 mg·L-1)were almost completely degraded over the B–SiO@TiO2(100:20)photocatalyst under the visible light irradiation at 35°C for 510 min.展开更多
A NiP/TiO2 composite film on carbon steel was prepared by electroless plating and sol-gel composite process. An artificial neural network was applied to optimize the prepared condition of the composite film. Corrosion...A NiP/TiO2 composite film on carbon steel was prepared by electroless plating and sol-gel composite process. An artificial neural network was applied to optimize the prepared condition of the composite film. Corrosion behavior of the NiP/TiO2 composite film was investigated by polarization resistance measurement, anode polarization, ESEM (environmental scanning electron microscopy) and EIS (electrochemical impedance spectroscopy) measurements. Results showed that the NiP/ TiO2 composite film has a good corrosion resistance in 0.5mol/L H2SO4 solution. The element valence of the composite film was characterized by XPS (X-ray photoelectron spectroscopy) spectrum, and an anticorrosion mechanism of the composite film was discussed.展开更多
An ambient pressure synthesis of SiO2/TiO2 binary aerogel was prepared through the low-cost precursors of titanium tetrachloride(TiCl4) and sodium silicate(Na2O·nSiO2).After gelation,solvent exchange and surf...An ambient pressure synthesis of SiO2/TiO2 binary aerogel was prepared through the low-cost precursors of titanium tetrachloride(TiCl4) and sodium silicate(Na2O·nSiO2).After gelation,solvent exchange and surface modification were performed simultaneously and the modified gel was finally dried under ambient pressure.Microstructural analyses by transmission electron microscope(TEM) indicate that fabricated SiO2/TiO2 aerogel composite shows similar sponge-like nanostructure as silica aerogel,and the Brunauer-EmmettTeller(BET) analysis shows that the specific surface area of the composite reaches 605 m^2/g,and the average pore size is 9.7 nm.Such binary aerogel exhibits significant photocatalytic performance in this paper for treating model pollutant of methyl orange(MO),and the decolorizing efficiency of MO is detected as 84.9%after 210 mins exposure to UV light irradiation.Degraded gel suspends in the water so as to separate from solution for reuse,and after 4 times recycling,70%degradation efficiency can be easily reached when composite catalyzed system is exposed for 210 mins under UV irradiation.展开更多
Three-dimensional (3D) five-directional braided (SiO2)/SiO2 composites were prepared by silicasol-infiltration-sintering (SIS) method. The flexural properties and microstructures were studied. The flexural stren...Three-dimensional (3D) five-directional braided (SiO2)/SiO2 composites were prepared by silicasol-infiltration-sintering (SIS) method. The flexural properties and microstructures were studied. The flexural strength and flexural elastic modulus were found to be 73 MPa and 12 GPa, respectively. The results of stress vs deflection curve and SEM examinations revealed that the fracture mechanism of 3D, five-directional braided (SiO2)/SiO2 composite was a mixture mode of ductile and brittle. The ductile mode was attributed to the weak bonding strength of fiber/matrix at low temperature. The brittle fracture might be caused by the propagation of micro defect or crack, which existed in the as-prepared composites for the ten-cycle process.展开更多
Al 2O 3-SiO 2-TiO 2-ZrO 2 supported membranes were prepar ed by Sol-Gel method. These composite ceramic membranes are level, even and no macro crack. There exist several crystalline phases such as Al 2O 3, TiO...Al 2O 3-SiO 2-TiO 2-ZrO 2 supported membranes were prepar ed by Sol-Gel method. These composite ceramic membranes are level, even and no macro crack. There exist several crystalline phases such as Al 2O 3, TiO 2(a natase), Al 2SiO 5, and ZrO 2 in these membranes. Changing the molar ratio of Al∶Si∶Ti∶Zr,the kinds and content of crystal phases of composite membranes could be different, which may lead to a variety of microstructure of membranes. The surface nanoscale topography and microstructure of membranes were investiga ted by XRD,SEM,AFM,EPMA. The effects of additives and heat treatments on the sur face nanoscale topography and microstructure of composite ceramic membranes were also analyzed.展开更多
The present study involves the preparation of TiO 2/ SiO 2nanocrystals and their application in self-cleaning wool-polyester fabrics.The TiO 2/ SiO 2nanocrystals were successfully synthesized and deposited onto wool-p...The present study involves the preparation of TiO 2/ SiO 2nanocrystals and their application in self-cleaning wool-polyester fabrics.The TiO 2/ SiO 2nanocrystals were successfully synthesized and deposited onto wool-polyester fabrics using the low-temperature sol-gel technique.The as-prepared nanocomposites and the nanocomposites coated samples were characterized by X-ray diffraction( XRD) and scanning electron microscopy( SEM),respectively.The XRD and SEM results showed that the single-phase anatase nanocrystallites were formed and loaded on the fabric surface successfully.The photocatalytic activities of TiO 2-coated and TiO 2/ SiO 2-coated wool-polyester fabrics were measured by studying photodegradation of methylene blue dye.Comparison of the photocatalytic activity of the coated samples reveals superiority of TiO 2/ SiO 2modified sample with respect to that of pure TiO 2modified sample.Our observations indicate that by applying this technique to the fabrics,self-cleaning materials can be designed for practical application.展开更多
A new anatase/SiO2 nanocomposite was synthesized by sol-gel method at room temperature using titanium tetrachloride and tetraethylorthosilicate as raw materials. Characterization of the product was carried out by mean...A new anatase/SiO2 nanocomposite was synthesized by sol-gel method at room temperature using titanium tetrachloride and tetraethylorthosilicate as raw materials. Characterization of the product was carried out by means of X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) specific surface areas, Thermogravimetry analysis (TGA), Fourier transform infrared (FT-IR), and UV-vis absorption spectroscopy. Thermal phase transformation studies of composite were carried out up to 1100°C which showed the establishment of anatase TiO2 phase. The presence of some tetrahedral coordination of TiO2 species in SiO2 matrix was confirmed by UV-Vis study. The produced TiO2/SiO2 nanocomposite has good photocatalytic properties due to its anatase phase, existence of tetrahedral coordination of TiO2 in the SiO2 matrix and very large surface area. Furthermore, the synthesized anatase/SiO2 shows significant adsorption ability towards Congo Red (CR) azo dye in comparison with the pure commercial TiO2 which is known as Degussa, P25.展开更多
This study focused on the development and characterization of TiO<sub>2</sub>-PES composite fibers with varying TiO<sub>2</sub> loading amounts using a phase inversion process. The resulting co...This study focused on the development and characterization of TiO<sub>2</sub>-PES composite fibers with varying TiO<sub>2</sub> loading amounts using a phase inversion process. The resulting composite fibers exhibited a sponge-like structure with embedded TiO<sub>2</sub> nanoparticles within a polymer matrix. Their photocatalytic performance for ammonia removal from aqueous solutions under UV-A light exposure was thoroughly investigated. The findings revealed that PeTi8 composite fibers displayed superior adsorption capacity compared to other samples. Moreover, the study explored the impact of pH, light intensity, and catalyst dosage on the photocatalytic degradation of ammonia. Adsorption equilibrium isotherms closely followed the Langmuir model, with the results indicating a correlation between qm values of 2.49 mg/g and the porous structure of the adsorbents. The research underscored the efficacy of TiO<sub>2</sub> composite fibers in the photocatalytic removal of aqueous under UV-A light. Notably, increasing the distance between the photocatalyst and the light source resulted in de-creased hydroxyl radical concentration, influencing photocatalytic efficiency. These findings contribute to our understanding of TiO<sub>2</sub> composite fibers as promising photocatalysts for ammonia removal in water treatment applications.展开更多
The uniform transparent TiO2/SiO2 photocatalytic composite thin films are prepared by sol-gel method on the soda lime glass substrates, and characterized by UV-visible spectroscopy, X-ray diffraction (XRD), transmissi...The uniform transparent TiO2/SiO2 photocatalytic composite thin films are prepared by sol-gel method on the soda lime glass substrates, and characterized by UV-visible spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), BET surface area, FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). It was found that the addition of SiO2 to TiO2 thin films can suppress the grain growth of TiO2 crystal, increase the hydroxyl content on the surface of TiO2 films, lower the contact angle for water on TiO, films and enhance the hydrophilic property of TiO2 films. The super-hydrophilic TiO2/SiO2 photocatalytic composite thin films with the contact angle of 0((o) under bar) are obtained by the addition of 10%-20% SiO2 in mole fraction.展开更多
Supermacroporous composite cryogels embedded with SiO2 nanoparticles were prepared by radical cryogenic copolymerization of the reactive monomer mixture of acrylamide(AAm) and N,N-methylene-bis-acrylamide(MBAAm) c...Supermacroporous composite cryogels embedded with SiO2 nanoparticles were prepared by radical cryogenic copolymerization of the reactive monomer mixture of acrylamide(AAm) and N,N-methylene-bis-acrylamide(MBAAm) containing SiO2 nanoparticles(mass ratios of nanoparticles to the monomer AAm from 0.01 to 0.08) under the freezing-temperature variation condition in glass columns.The properties of these composite cryogels were measured.The height equivalent to theoretical plate(HETP) of the cryogel beds at different liquid flow rates was determined by residence time distribution(RTD) using tracer pulse-response method.The composite cryogel matrix embedded with the mass fraction of SiO2 nanoparticles of 0.02 presented the best properties and was employed in the following graft polymerization.Chromatographic process of lysozyme in the composite cryogel grafted with 2-acrylamido-2-methyl-1-propanesulfonic acid(AMPSA) was carried out to evaluate the protein breakthrough and elution characteristics.The chromatography can be carried out at relatively high superficial velocity,i.e.,15 cm·min-1,indicating the satisfactory mechanical strength due to the embedded nanoparticles.展开更多
A silicon dioxide fiber-reinforced silicon nitride matrix (SiOJSi3N4) composite used for radomes was prepared by chemical vapor infiltration (CVI) process using the SiCl4-NH3-H2 system. The effects of the process ...A silicon dioxide fiber-reinforced silicon nitride matrix (SiOJSi3N4) composite used for radomes was prepared by chemical vapor infiltration (CVI) process using the SiCl4-NH3-H2 system. The effects of the process conditions, including infiltration temperature, infiltration time, and gas flux were investigated. The energy dispersion spectra (EDS) result showed that the main elements of this composite contained Si, N, and O. The X-ray diffraction (XRD) results indicated that phases of the composite before and after treatment at 1350℃ were all amorphous. A little fiber pull-out was observed on the cross section of the composite by scan electron microscope (SEM). As a result, the composite exhibited good thermal stability, but an appropriate interface was necessary between the fiber and the matrix.展开更多
ZrO2/TiO2 composite photocatalytic film was produced on the pure titanium substrate using in-situ Zr(OH)4 colloidal particle by the micro-arc oxidation technique and characterized by scanning electron microscope (...ZrO2/TiO2 composite photocatalytic film was produced on the pure titanium substrate using in-situ Zr(OH)4 colloidal particle by the micro-arc oxidation technique and characterized by scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD) and ultraviolet-visible (UV-Vis) spectrophotometer. The composite film shows a lamellar and porous structure which consists of anatase, futile and ZrO2 phases. The optical absorption edge of film is shifted to longer wavelength when ZrO2 is introduced to TiO2. Furthermore, the photocatalytic reaction rate constants of degradation of rhodamine B solution with ZrO2/TiO2 composite film and pure TiO2 film under ultraviolet irradiation are measured as 0.0442 and 0.0186 h 1, respectively.展开更多
Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships amon...Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships among the important electrical parameters of the samples with different thickness SiO2-Si3N4 films,such as threshold voltage,breakdown voltage,and on-state resistance in accumulated dose,are discussed.The total dose experiment results show that the breakdown voltage and the on-state resistance barely change with the accumulated dose.However,the relationships between the threshold voltages of the samples and the accumulated dose are more complex,and not only positively drift,but also negatively drift.At the end of the total dose experiment,we select the group of samples which have the smaller threshold voltage shift to carry out the single event effect studies.We find that the samples with appropriate thickness ratio SiO2-Si3N4 films have a good radiation-hardening ability.This method may be useful in solving both the SEGR and the total dose problems with the composite SiO2-Si3N4 films.展开更多
The micro/nano-scale indentation tests were performed to explore the performance of bisphenol-α-glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) dental resin composites. The effect of the fi...The micro/nano-scale indentation tests were performed to explore the performance of bisphenol-α-glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) dental resin composites. The effect of the filling content of nano-SiO2 particles on the mechanical properties of the dental composites was studied as well. The experimental results showed that the incorporation of the nano-SiO2 particles at low concentrations (up to 10 wt.%) can apparently increase the hardness and elastic modulus of the dental rein composites. The plasticity index indicates a best elastic recovery capability at a proper amount (4 wt.%) of the nanoparticles. Combined with the infrared spectrum, the mechanical enhancement mechanisms of the dental resin composites were analyzed.展开更多
TiO2-coated activated carbon surface (TAs) composites were prepared by a sol-gel method with supercritical pretreatment. The photocatalytic degradation of acid yellow (AY) was investigated under UV radiation to es...TiO2-coated activated carbon surface (TAs) composites were prepared by a sol-gel method with supercritical pretreatment. The photocatalytic degradation of acid yellow (AY) was investigated under UV radiation to estimate activity of catalysts and determine the kinetics. And the effects of parameters including the initial concentration of AY, light intensity and TiO2 content in catalysts were examined. The results indicate that TAs has a higher efficiency in decomposition of AY than P25, pure TiO2 particles as well as the mixture of TiO2 powder and active carbon. The photocatalytic degradation rate is found to follow the pseudo-first order kinetics with respect to the AY concentration. The new kinetic model fairly resembles the classic Langmuir-Hinshelwood equation, and the rate constant is proportional to the square root of the light intensity in a wide range. However, its absorption performance depends on the surface areas of catalysts. The model fits quite well with the experimental data and elucidates phenomena about the effects of the TiO2 content in TAs on the degradation rate.展开更多
We report a facile method for the fabrication of TiO2 nanofiber-nanoparticle composite (FP) via. simulta- neous electrospraying and electrospinning for dye-sensitized solar cell (DSC) applications. The loading of ...We report a facile method for the fabrication of TiO2 nanofiber-nanoparticle composite (FP) via. simulta- neous electrospraying and electrospinning for dye-sensitized solar cell (DSC) applications. The loading of nanoparticles on the fibers is controlled by varying their feed rates during electrospinning. The FP composites having three different particle loading are prepared by the methodology and the FP with the highest particle loading (denoted as FP-3 in the manuscript) showed the best overall efficiency of 9.15% in comparison to the other compositions of the FP (FP-2, 8.15% and FP-1, Z51%, respectively) and nanofibers (F) and nanoparticles (P) separately (7.21 and 7.81, respectively). All the material systems are characterized by spec- troscopy, microscopy, surface area measurements and the devices are characterized by current-voltage (I-V), incident photon-to-current conversion efficiency (IPCE), electrochemical impedance measurements, etc. I-V, dye-loading and reflectance measurements throw light on the overall performance of the DSC devices.展开更多
Graphite/TiO2 composite particles were obtained by sol-gel technique in this paper. The structure and characteristic of the composite particles are analyzed by XRD, SEM and TG-DTA. The electrorheological properties of...Graphite/TiO2 composite particles were obtained by sol-gel technique in this paper. The structure and characteristic of the composite particles are analyzed by XRD, SEM and TG-DTA. The electrorheological properties of the ER fluid containing the particles were measured by a Couette-type rheometer under shear rates of 1-136 s-1 and AC electric fields of 0-3 kV/mm. The experimental results show that the leaking current density of the ER fluid is higher than that of pure titanium dioxide particles dispersed in damping oil. The shear yield stress of the ER fluid increases with increasing electric field and exhibits a typical Bingham flow behavior. The suspension demonstrates an excellent ER performance (τ/τo=1200) compared with conventional ER fluids (τ/τ0 ≤500). The sedimentation of the ER fluid is improved obviously due to the coating effect of the particles.展开更多
Single source molecular precursors (SSPs) provide an opportunity to get control over the microstructure of nanomaterials at atomic level. A SSP was designed and developed for the synthesis of ZnO/TiO2 nanocomposite ...Single source molecular precursors (SSPs) provide an opportunity to get control over the microstructure of nanomaterials at atomic level. A SSP was designed and developed for the synthesis of ZnO/TiO2 nanocomposite by sol gel method. In a typical synthe-sis process, a bimetallic molecular compound with chemical formula [Cl2TiZn(dmae)4] (dmae=dimethylaminoethanol) was synthesized and its chemical composition was deter-mined by elemental analysis. The obtained compound has shown excellent solubility in common organic solvents, a prerequisite for its use in sol gel method as SSP. The SSP ob-tained was controllably hydrolyzed by adding equimolar amount of water using ethanol as solvent to get ZnO/TiO2 nanocomposite gel. The resulting gel was precipitated at pH=9 and sintered at 200 ℃ (T200), 400℃ (T400), and 600℃ (T600). The XRD analyses have shown that the as synthesized (non-sintered, T00) powder was amorphous. However, the crystallinity improved upon sintering, and the XRD analyses revealed that the resulting nanomaterials were composed of mixed oxides i.e., ZnO and TiO2. The ZnO was in wurtzite (hexagonal) while the TiO2 was in brookite (orthorhombic) phase. The increase in particlesize was further confirmed from BET analysis and SEM micrographs. The IR spectra ob-tained for the resulting powder have shown the peculiar vibrational bands for Zn-O and Ti-O. Furthermore, the IR spectra revealed that the non-sintered ZnO/TiO2 nanocomposite had significant number of OH group which was removed upon sintering. The photocatalytic activities of the ZnO/TiO2 nanocomposites were tested. All the samples have shown good photocatalytic activities. However, the T400 has shown higher activity than the T00, T200, and T600. The higher photocatalytic activity of T400 than T00, T200, and T600 may be due to improved crystallinity which ensures efficient grain boundary interfaces.展开更多
基金Supported by the National Natural Science Foundation of China(21506078).
文摘Hollow B–SiO2@TiO2 composites were prepared by the wet chemical deposition method starting from TiCl4 and hollow B–SiO2 microspheres.TiO2 layers composed of anatase TiO2 nanoparticles were coated on the surfaces of the hollow B–SiO2 microspheres probably through the formation of Ti—O—Si and Ti—O—B bonds.A great number of—OH groups were also present at the TiO2 coating layers.The presence of Ti—O—Si bonds and Ti—O—B bonds resulted in the formation of defects in the TiO2 coating layers,which decreased the band gap of the TiO2 coating layers to ca.3.0 eV and endowed the TiO2 coating layers with visible light absorption performance.The buoyancy hollow B–SiO2@TiO2 composites exhibited high photocatalytic activities for the degradation of ammonia-nitrogen and green algae.The conversion of ammonia-nitrogen reached 65%when the degradation of ammonia-nitrogen(43 mg·L-1 at pH value of 8)was catalyzed by the B–SiO2@TiO2(100:10)composite under the simulated solar light irradiation at 35°C for 660 min.The green algae(5 mg·L-1)were almost completely degraded over the B–SiO@TiO2(100:20)photocatalyst under the visible light irradiation at 35°C for 510 min.
文摘A NiP/TiO2 composite film on carbon steel was prepared by electroless plating and sol-gel composite process. An artificial neural network was applied to optimize the prepared condition of the composite film. Corrosion behavior of the NiP/TiO2 composite film was investigated by polarization resistance measurement, anode polarization, ESEM (environmental scanning electron microscopy) and EIS (electrochemical impedance spectroscopy) measurements. Results showed that the NiP/ TiO2 composite film has a good corrosion resistance in 0.5mol/L H2SO4 solution. The element valence of the composite film was characterized by XPS (X-ray photoelectron spectroscopy) spectrum, and an anticorrosion mechanism of the composite film was discussed.
基金Funded by the National Natural Science Foundation of China(NSFC)(Nos.51278073,51308079 and 51408073)
文摘An ambient pressure synthesis of SiO2/TiO2 binary aerogel was prepared through the low-cost precursors of titanium tetrachloride(TiCl4) and sodium silicate(Na2O·nSiO2).After gelation,solvent exchange and surface modification were performed simultaneously and the modified gel was finally dried under ambient pressure.Microstructural analyses by transmission electron microscope(TEM) indicate that fabricated SiO2/TiO2 aerogel composite shows similar sponge-like nanostructure as silica aerogel,and the Brunauer-EmmettTeller(BET) analysis shows that the specific surface area of the composite reaches 605 m^2/g,and the average pore size is 9.7 nm.Such binary aerogel exhibits significant photocatalytic performance in this paper for treating model pollutant of methyl orange(MO),and the decolorizing efficiency of MO is detected as 84.9%after 210 mins exposure to UV light irradiation.Degraded gel suspends in the water so as to separate from solution for reuse,and after 4 times recycling,70%degradation efficiency can be easily reached when composite catalyzed system is exposed for 210 mins under UV irradiation.
基金Funded by the Basic Research Project of Science and Technology of Jiangsu Province(No.BK2009002)the National Natural ScienceFoundation of China(No.61176062)the Fundamental Research Funds for the Central Universities(No.NS2013061)
文摘Three-dimensional (3D) five-directional braided (SiO2)/SiO2 composites were prepared by silicasol-infiltration-sintering (SIS) method. The flexural properties and microstructures were studied. The flexural strength and flexural elastic modulus were found to be 73 MPa and 12 GPa, respectively. The results of stress vs deflection curve and SEM examinations revealed that the fracture mechanism of 3D, five-directional braided (SiO2)/SiO2 composite was a mixture mode of ductile and brittle. The ductile mode was attributed to the weak bonding strength of fiber/matrix at low temperature. The brittle fracture might be caused by the propagation of micro defect or crack, which existed in the as-prepared composites for the ten-cycle process.
文摘Al 2O 3-SiO 2-TiO 2-ZrO 2 supported membranes were prepar ed by Sol-Gel method. These composite ceramic membranes are level, even and no macro crack. There exist several crystalline phases such as Al 2O 3, TiO 2(a natase), Al 2SiO 5, and ZrO 2 in these membranes. Changing the molar ratio of Al∶Si∶Ti∶Zr,the kinds and content of crystal phases of composite membranes could be different, which may lead to a variety of microstructure of membranes. The surface nanoscale topography and microstructure of membranes were investiga ted by XRD,SEM,AFM,EPMA. The effects of additives and heat treatments on the sur face nanoscale topography and microstructure of composite ceramic membranes were also analyzed.
基金the Fundamental Research Funds for the Central Universities,China,China Postdoctoral Science
文摘The present study involves the preparation of TiO 2/ SiO 2nanocrystals and their application in self-cleaning wool-polyester fabrics.The TiO 2/ SiO 2nanocrystals were successfully synthesized and deposited onto wool-polyester fabrics using the low-temperature sol-gel technique.The as-prepared nanocomposites and the nanocomposites coated samples were characterized by X-ray diffraction( XRD) and scanning electron microscopy( SEM),respectively.The XRD and SEM results showed that the single-phase anatase nanocrystallites were formed and loaded on the fabric surface successfully.The photocatalytic activities of TiO 2-coated and TiO 2/ SiO 2-coated wool-polyester fabrics were measured by studying photodegradation of methylene blue dye.Comparison of the photocatalytic activity of the coated samples reveals superiority of TiO 2/ SiO 2modified sample with respect to that of pure TiO 2modified sample.Our observations indicate that by applying this technique to the fabrics,self-cleaning materials can be designed for practical application.
文摘A new anatase/SiO2 nanocomposite was synthesized by sol-gel method at room temperature using titanium tetrachloride and tetraethylorthosilicate as raw materials. Characterization of the product was carried out by means of X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) specific surface areas, Thermogravimetry analysis (TGA), Fourier transform infrared (FT-IR), and UV-vis absorption spectroscopy. Thermal phase transformation studies of composite were carried out up to 1100°C which showed the establishment of anatase TiO2 phase. The presence of some tetrahedral coordination of TiO2 species in SiO2 matrix was confirmed by UV-Vis study. The produced TiO2/SiO2 nanocomposite has good photocatalytic properties due to its anatase phase, existence of tetrahedral coordination of TiO2 in the SiO2 matrix and very large surface area. Furthermore, the synthesized anatase/SiO2 shows significant adsorption ability towards Congo Red (CR) azo dye in comparison with the pure commercial TiO2 which is known as Degussa, P25.
文摘This study focused on the development and characterization of TiO<sub>2</sub>-PES composite fibers with varying TiO<sub>2</sub> loading amounts using a phase inversion process. The resulting composite fibers exhibited a sponge-like structure with embedded TiO<sub>2</sub> nanoparticles within a polymer matrix. Their photocatalytic performance for ammonia removal from aqueous solutions under UV-A light exposure was thoroughly investigated. The findings revealed that PeTi8 composite fibers displayed superior adsorption capacity compared to other samples. Moreover, the study explored the impact of pH, light intensity, and catalyst dosage on the photocatalytic degradation of ammonia. Adsorption equilibrium isotherms closely followed the Langmuir model, with the results indicating a correlation between qm values of 2.49 mg/g and the porous structure of the adsorbents. The research underscored the efficacy of TiO<sub>2</sub> composite fibers in the photocatalytic removal of aqueous under UV-A light. Notably, increasing the distance between the photocatalyst and the light source resulted in de-creased hydroxyl radical concentration, influencing photocatalytic efficiency. These findings contribute to our understanding of TiO<sub>2</sub> composite fibers as promising photocatalysts for ammonia removal in water treatment applications.
基金This work was financially supported by the Foundation for University Key Teachers by the Ministry of Education, theKey Resear
文摘The uniform transparent TiO2/SiO2 photocatalytic composite thin films are prepared by sol-gel method on the soda lime glass substrates, and characterized by UV-visible spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), BET surface area, FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). It was found that the addition of SiO2 to TiO2 thin films can suppress the grain growth of TiO2 crystal, increase the hydroxyl content on the surface of TiO2 films, lower the contact angle for water on TiO, films and enhance the hydrophilic property of TiO2 films. The super-hydrophilic TiO2/SiO2 photocatalytic composite thin films with the contact angle of 0((o) under bar) are obtained by the addition of 10%-20% SiO2 in mole fraction.
基金Supported by the National Natural Science Foundation of China(20876145) the Natural Science Foundation of Zhejiang Province(Y4080329)
文摘Supermacroporous composite cryogels embedded with SiO2 nanoparticles were prepared by radical cryogenic copolymerization of the reactive monomer mixture of acrylamide(AAm) and N,N-methylene-bis-acrylamide(MBAAm) containing SiO2 nanoparticles(mass ratios of nanoparticles to the monomer AAm from 0.01 to 0.08) under the freezing-temperature variation condition in glass columns.The properties of these composite cryogels were measured.The height equivalent to theoretical plate(HETP) of the cryogel beds at different liquid flow rates was determined by residence time distribution(RTD) using tracer pulse-response method.The composite cryogel matrix embedded with the mass fraction of SiO2 nanoparticles of 0.02 presented the best properties and was employed in the following graft polymerization.Chromatographic process of lysozyme in the composite cryogel grafted with 2-acrylamido-2-methyl-1-propanesulfonic acid(AMPSA) was carried out to evaluate the protein breakthrough and elution characteristics.The chromatography can be carried out at relatively high superficial velocity,i.e.,15 cm·min-1,indicating the satisfactory mechanical strength due to the embedded nanoparticles.
基金This study was financially supported by the Key Foundation of National Science in China (No. 90405015), the National Elitist Youth Foundation of China (No. 50425208the Doctorate Foundation of Northwestern Polytechnical University (CX200505).
文摘A silicon dioxide fiber-reinforced silicon nitride matrix (SiOJSi3N4) composite used for radomes was prepared by chemical vapor infiltration (CVI) process using the SiCl4-NH3-H2 system. The effects of the process conditions, including infiltration temperature, infiltration time, and gas flux were investigated. The energy dispersion spectra (EDS) result showed that the main elements of this composite contained Si, N, and O. The X-ray diffraction (XRD) results indicated that phases of the composite before and after treatment at 1350℃ were all amorphous. A little fiber pull-out was observed on the cross section of the composite by scan electron microscope (SEM). As a result, the composite exhibited good thermal stability, but an appropriate interface was necessary between the fiber and the matrix.
基金Project(gf200901002)supported by the Open Research Fund of National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology of Nanchang Hangkong University,China
文摘ZrO2/TiO2 composite photocatalytic film was produced on the pure titanium substrate using in-situ Zr(OH)4 colloidal particle by the micro-arc oxidation technique and characterized by scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD) and ultraviolet-visible (UV-Vis) spectrophotometer. The composite film shows a lamellar and porous structure which consists of anatase, futile and ZrO2 phases. The optical absorption edge of film is shifted to longer wavelength when ZrO2 is introduced to TiO2. Furthermore, the photocatalytic reaction rate constants of degradation of rhodamine B solution with ZrO2/TiO2 composite film and pure TiO2 film under ultraviolet irradiation are measured as 0.0442 and 0.0186 h 1, respectively.
文摘Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships among the important electrical parameters of the samples with different thickness SiO2-Si3N4 films,such as threshold voltage,breakdown voltage,and on-state resistance in accumulated dose,are discussed.The total dose experiment results show that the breakdown voltage and the on-state resistance barely change with the accumulated dose.However,the relationships between the threshold voltages of the samples and the accumulated dose are more complex,and not only positively drift,but also negatively drift.At the end of the total dose experiment,we select the group of samples which have the smaller threshold voltage shift to carry out the single event effect studies.We find that the samples with appropriate thickness ratio SiO2-Si3N4 films have a good radiation-hardening ability.This method may be useful in solving both the SEGR and the total dose problems with the composite SiO2-Si3N4 films.
文摘The micro/nano-scale indentation tests were performed to explore the performance of bisphenol-α-glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) dental resin composites. The effect of the filling content of nano-SiO2 particles on the mechanical properties of the dental composites was studied as well. The experimental results showed that the incorporation of the nano-SiO2 particles at low concentrations (up to 10 wt.%) can apparently increase the hardness and elastic modulus of the dental rein composites. The plasticity index indicates a best elastic recovery capability at a proper amount (4 wt.%) of the nanoparticles. Combined with the infrared spectrum, the mechanical enhancement mechanisms of the dental resin composites were analyzed.
基金Project(50802034) supported by the National Natural Science Foundation of ChinaProject(11A093) supported by the Key Project Foundation by the Education Department of Hunan Province,China
文摘TiO2-coated activated carbon surface (TAs) composites were prepared by a sol-gel method with supercritical pretreatment. The photocatalytic degradation of acid yellow (AY) was investigated under UV radiation to estimate activity of catalysts and determine the kinetics. And the effects of parameters including the initial concentration of AY, light intensity and TiO2 content in catalysts were examined. The results indicate that TAs has a higher efficiency in decomposition of AY than P25, pure TiO2 particles as well as the mixture of TiO2 powder and active carbon. The photocatalytic degradation rate is found to follow the pseudo-first order kinetics with respect to the AY concentration. The new kinetic model fairly resembles the classic Langmuir-Hinshelwood equation, and the rate constant is proportional to the square root of the light intensity in a wide range. However, its absorption performance depends on the surface areas of catalysts. The model fits quite well with the experimental data and elucidates phenomena about the effects of the TiO2 content in TAs on the degradation rate.
基金supported by Ministry of New and Renewable Energy(MNRE)the Solar Energy Research Initiative(SERI),respectively.of Govt.of India
文摘We report a facile method for the fabrication of TiO2 nanofiber-nanoparticle composite (FP) via. simulta- neous electrospraying and electrospinning for dye-sensitized solar cell (DSC) applications. The loading of nanoparticles on the fibers is controlled by varying their feed rates during electrospinning. The FP composites having three different particle loading are prepared by the methodology and the FP with the highest particle loading (denoted as FP-3 in the manuscript) showed the best overall efficiency of 9.15% in comparison to the other compositions of the FP (FP-2, 8.15% and FP-1, Z51%, respectively) and nanofibers (F) and nanoparticles (P) separately (7.21 and 7.81, respectively). All the material systems are characterized by spec- troscopy, microscopy, surface area measurements and the devices are characterized by current-voltage (I-V), incident photon-to-current conversion efficiency (IPCE), electrochemical impedance measurements, etc. I-V, dye-loading and reflectance measurements throw light on the overall performance of the DSC devices.
基金The authors are thankful to the support of the National Natural Science Foundation of China(Grant No.50135030).
文摘Graphite/TiO2 composite particles were obtained by sol-gel technique in this paper. The structure and characteristic of the composite particles are analyzed by XRD, SEM and TG-DTA. The electrorheological properties of the ER fluid containing the particles were measured by a Couette-type rheometer under shear rates of 1-136 s-1 and AC electric fields of 0-3 kV/mm. The experimental results show that the leaking current density of the ER fluid is higher than that of pure titanium dioxide particles dispersed in damping oil. The shear yield stress of the ER fluid increases with increasing electric field and exhibits a typical Bingham flow behavior. The suspension demonstrates an excellent ER performance (τ/τo=1200) compared with conventional ER fluids (τ/τ0 ≤500). The sedimentation of the ER fluid is improved obviously due to the coating effect of the particles.
文摘Single source molecular precursors (SSPs) provide an opportunity to get control over the microstructure of nanomaterials at atomic level. A SSP was designed and developed for the synthesis of ZnO/TiO2 nanocomposite by sol gel method. In a typical synthe-sis process, a bimetallic molecular compound with chemical formula [Cl2TiZn(dmae)4] (dmae=dimethylaminoethanol) was synthesized and its chemical composition was deter-mined by elemental analysis. The obtained compound has shown excellent solubility in common organic solvents, a prerequisite for its use in sol gel method as SSP. The SSP ob-tained was controllably hydrolyzed by adding equimolar amount of water using ethanol as solvent to get ZnO/TiO2 nanocomposite gel. The resulting gel was precipitated at pH=9 and sintered at 200 ℃ (T200), 400℃ (T400), and 600℃ (T600). The XRD analyses have shown that the as synthesized (non-sintered, T00) powder was amorphous. However, the crystallinity improved upon sintering, and the XRD analyses revealed that the resulting nanomaterials were composed of mixed oxides i.e., ZnO and TiO2. The ZnO was in wurtzite (hexagonal) while the TiO2 was in brookite (orthorhombic) phase. The increase in particlesize was further confirmed from BET analysis and SEM micrographs. The IR spectra ob-tained for the resulting powder have shown the peculiar vibrational bands for Zn-O and Ti-O. Furthermore, the IR spectra revealed that the non-sintered ZnO/TiO2 nanocomposite had significant number of OH group which was removed upon sintering. The photocatalytic activities of the ZnO/TiO2 nanocomposites were tested. All the samples have shown good photocatalytic activities. However, the T400 has shown higher activity than the T00, T200, and T600. The higher photocatalytic activity of T400 than T00, T200, and T600 may be due to improved crystallinity which ensures efficient grain boundary interfaces.