Nafion/TiO2 composite membranes were prepared by in-situ chemical reaction method using Ti(OC4H9)4 and Nafion 117 as raw materials. The membranes were characterized by UV, FTIR-ATR and XRD, respectively. Methanol perm...Nafion/TiO2 composite membranes were prepared by in-situ chemical reaction method using Ti(OC4H9)4 and Nafion 117 as raw materials. The membranes were characterized by UV, FTIR-ATR and XRD, respectively. Methanol permeability and water uptake were investigated as a function of TiO2 contents. The conductivity of the membranes was measured under water vapor pressure (2.644 7 kPa) or in dry atmospheres. The XRD results showed that the titanium dioxide in Nafion membranes were crystallized in anatase phase with an average crys- taline diameter of 3.0 nm. The water uptake of the composite membranes was larger than that of the pure Nafion○ membrane when the TiO2 loading was within 14wt%. The methanol permeability of the membrane decreased as the TiO2 loading increased. The addition of 3wt% TiO2 to Nafion○ membranes improved the conductivity in dry measurement conditions. The proton conductivity of the composite membrane increased greatly after the hy- drothermal treatment at 160 ℃ for 2 hours.展开更多
文摘Nafion/TiO2 composite membranes were prepared by in-situ chemical reaction method using Ti(OC4H9)4 and Nafion 117 as raw materials. The membranes were characterized by UV, FTIR-ATR and XRD, respectively. Methanol permeability and water uptake were investigated as a function of TiO2 contents. The conductivity of the membranes was measured under water vapor pressure (2.644 7 kPa) or in dry atmospheres. The XRD results showed that the titanium dioxide in Nafion membranes were crystallized in anatase phase with an average crys- taline diameter of 3.0 nm. The water uptake of the composite membranes was larger than that of the pure Nafion○ membrane when the TiO2 loading was within 14wt%. The methanol permeability of the membrane decreased as the TiO2 loading increased. The addition of 3wt% TiO2 to Nafion○ membranes improved the conductivity in dry measurement conditions. The proton conductivity of the composite membrane increased greatly after the hy- drothermal treatment at 160 ℃ for 2 hours.