We report the synthesis of TiO2/ZnSn(OH)6 as a novel nano-composite material via a simultaneous crystallization-etching route with cubic nano-ZnSn(OH)6 and TiF4 as the precursors. The structure, composition and mo...We report the synthesis of TiO2/ZnSn(OH)6 as a novel nano-composite material via a simultaneous crystallization-etching route with cubic nano-ZnSn(OH)6 and TiF4 as the precursors. The structure, composition and morphology of the composite were characterized by XRD, EDS, FETEM and FESEM, which showed the prepared TiO2/ZnSn(OH)6 had a unique morphology of hollow cubic nano-ZnSn(OH)6 attached with rutile TiO2 nanoparticles. The results of photocatalytic activity measurement indicated the photocatalytic activity of the prepared composite was better than that of nano-ZnSn(OH)6. This study may be helpful for the design and fabrication of functional comoosite materials.展开更多
A series of TiO2-SnO2 nano-sized composite photo-catalysts containing Sn (9.3%-30.1%) were prepared from TiCI4 and SnCl4·5H2O by using sol-gel, supercritical fluid dry and solid-phase reaction (SCFD) combination ...A series of TiO2-SnO2 nano-sized composite photo-catalysts containing Sn (9.3%-30.1%) were prepared from TiCI4 and SnCl4·5H2O by using sol-gel, supercritical fluid dry and solid-phase reaction (SCFD) combination technology. Characterizations with X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier Transform Infrared Spectroscopy (FTIR) showed that, in addition to anatase type TiO2, a new active phase (Ti, Sn)O2 (with particle size of 2.0-4.3 nm) formed, and there were no SnO2 crystals observed in the range of the doping concentration studied. Photo-catalytic reaction of phenol was used as a model reaction to evaluate the catalytic activities of the obtained catalysts. Compared with pure TiO2 or Ti-Sn catalyst prepared with general sol-gel method, Ti-Sn nano-composite photo-catalyst thus obtained showed significant improvement in catalytic activity. The photo-catalytic degradation rate of phenol could reach as high as 93.5% after 7 h. The preparation conditions of the new phase (Ti, Sn)O2 were investigated and its catalytic mechanism was proposed. The photo-catalytic particles prepared using SCFD combination technology exhibited small particle size, large surface area and high activity.展开更多
The hydrated-titanium-oxide/montmorillonite composite samples were prepared using a hydrolysation- intercalation composite method by controlling the amount of TiOSO4·2H2O. The TiO2/montmorillonite composite sampl...The hydrated-titanium-oxide/montmorillonite composite samples were prepared using a hydrolysation- intercalation composite method by controlling the amount of TiOSO4·2H2O. The TiO2/montmorillonite composite samples were got after calculated at 700℃ and 1100 ℃. The results show that: when the value of Ti/montmorillonite is 12.5 mmol/g, the c axis of hydrated-titanium-oxide/ montmorillonite composite sample began to disorder, moreover, the crystal size of anatase is just 13.4nm in the TiO2/montmorillonite composite sample calculated at 700 ℃, and after calculated at 1100 ℃, the crystal size of anatase is 55.8 nm, and the relative content of anatase reaches the highest (55.7%). Compared with pure TiO2 nano-particle sample, TiO2/montmorillonite composite sample has a higher phase transition temperature from anatase phase to rutile phase and smaller crystal size of TiO2. Montmorillonite structure layer has a significant blocking effect on TiO2 phase transformation and grain growth, and the blocking effect reaches saturation when the value of Ti/montmorillonite is 12.5 mmol/g.展开更多
Fe2O3/SiO2 nano-composite films were prepared by sol-gel technique combining heat treatment in the range of 100-900 ℃. The particle size was observed by FE-SEM. Optical properties of the films were investigated by UV...Fe2O3/SiO2 nano-composite films were prepared by sol-gel technique combining heat treatment in the range of 100-900 ℃. The particle size was observed by FE-SEM. Optical properties of the films were investigated by UV-visible spectra. Structural and magnetic characteristics were investigated through FT-IR and VSM. The transparency of the Fe2O3/SiO2 nano-composite films decreased with the content of the Fe2O3. Water and organic solvent in the films were evaporated with heat treatment, so the transparency of the films was enhanced under high temperature. It is also found that the saturation magnetization (Ms) of the films increases with the temperature. As the content of the Fe2O3 increases, when the content of the Fe2O3 is around 30wt%, the Ms of the films has a maximum value.展开更多
Synthetic method of solid superacid TiSiW 12 O 40 /TiO 2 was described.The synthesis of iso amyl propionate catalyzed by TiSiW 12 O 40 /TiO 2 has been studied and the factors influencing on the yield is discussed.It s...Synthetic method of solid superacid TiSiW 12 O 40 /TiO 2 was described.The synthesis of iso amyl propionate catalyzed by TiSiW 12 O 40 /TiO 2 has been studied and the factors influencing on the yield is discussed.It shows that it’s an excellent catalyst,the yield of the iso amyl propionate can be over 77% when the molar ratio of iso amyl alcohol and propionic acid is 1.2,the quality of TiSiW 12 O 40 /TiO 2 is equal to 1.5% feed stock,the reaction time is 80min and the reaction temperature is about 103~107℃.展开更多
基金Supported by the Natural Science Foundation of Fujian Province(No.2013J05027)Fujian Province Education-Science Project for Middle-aged and Young Teachers(No.JA13050)
文摘We report the synthesis of TiO2/ZnSn(OH)6 as a novel nano-composite material via a simultaneous crystallization-etching route with cubic nano-ZnSn(OH)6 and TiF4 as the precursors. The structure, composition and morphology of the composite were characterized by XRD, EDS, FETEM and FESEM, which showed the prepared TiO2/ZnSn(OH)6 had a unique morphology of hollow cubic nano-ZnSn(OH)6 attached with rutile TiO2 nanoparticles. The results of photocatalytic activity measurement indicated the photocatalytic activity of the prepared composite was better than that of nano-ZnSn(OH)6. This study may be helpful for the design and fabrication of functional comoosite materials.
基金The authors thank the National Natural Scir nce Foun-dation of China(No.20076004)the National Development Project of High Technology(No.2001AA322030)the Doctoral Program of Higher Education(No.2000001005)for the financial support of this project.
文摘A series of TiO2-SnO2 nano-sized composite photo-catalysts containing Sn (9.3%-30.1%) were prepared from TiCI4 and SnCl4·5H2O by using sol-gel, supercritical fluid dry and solid-phase reaction (SCFD) combination technology. Characterizations with X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier Transform Infrared Spectroscopy (FTIR) showed that, in addition to anatase type TiO2, a new active phase (Ti, Sn)O2 (with particle size of 2.0-4.3 nm) formed, and there were no SnO2 crystals observed in the range of the doping concentration studied. Photo-catalytic reaction of phenol was used as a model reaction to evaluate the catalytic activities of the obtained catalysts. Compared with pure TiO2 or Ti-Sn catalyst prepared with general sol-gel method, Ti-Sn nano-composite photo-catalyst thus obtained showed significant improvement in catalytic activity. The photo-catalytic degradation rate of phenol could reach as high as 93.5% after 7 h. The preparation conditions of the new phase (Ti, Sn)O2 were investigated and its catalytic mechanism was proposed. The photo-catalytic particles prepared using SCFD combination technology exhibited small particle size, large surface area and high activity.
文摘The hydrated-titanium-oxide/montmorillonite composite samples were prepared using a hydrolysation- intercalation composite method by controlling the amount of TiOSO4·2H2O. The TiO2/montmorillonite composite samples were got after calculated at 700℃ and 1100 ℃. The results show that: when the value of Ti/montmorillonite is 12.5 mmol/g, the c axis of hydrated-titanium-oxide/ montmorillonite composite sample began to disorder, moreover, the crystal size of anatase is just 13.4nm in the TiO2/montmorillonite composite sample calculated at 700 ℃, and after calculated at 1100 ℃, the crystal size of anatase is 55.8 nm, and the relative content of anatase reaches the highest (55.7%). Compared with pure TiO2 nano-particle sample, TiO2/montmorillonite composite sample has a higher phase transition temperature from anatase phase to rutile phase and smaller crystal size of TiO2. Montmorillonite structure layer has a significant blocking effect on TiO2 phase transformation and grain growth, and the blocking effect reaches saturation when the value of Ti/montmorillonite is 12.5 mmol/g.
基金Funded by the Innovative Program of Shanghai Municipal Education Commission (No.08YZ97)the National Natural Science Foundation of China (No.10704048)
文摘Fe2O3/SiO2 nano-composite films were prepared by sol-gel technique combining heat treatment in the range of 100-900 ℃. The particle size was observed by FE-SEM. Optical properties of the films were investigated by UV-visible spectra. Structural and magnetic characteristics were investigated through FT-IR and VSM. The transparency of the Fe2O3/SiO2 nano-composite films decreased with the content of the Fe2O3. Water and organic solvent in the films were evaporated with heat treatment, so the transparency of the films was enhanced under high temperature. It is also found that the saturation magnetization (Ms) of the films increases with the temperature. As the content of the Fe2O3 increases, when the content of the Fe2O3 is around 30wt%, the Ms of the films has a maximum value.
文摘Synthetic method of solid superacid TiSiW 12 O 40 /TiO 2 was described.The synthesis of iso amyl propionate catalyzed by TiSiW 12 O 40 /TiO 2 has been studied and the factors influencing on the yield is discussed.It shows that it’s an excellent catalyst,the yield of the iso amyl propionate can be over 77% when the molar ratio of iso amyl alcohol and propionic acid is 1.2,the quality of TiSiW 12 O 40 /TiO 2 is equal to 1.5% feed stock,the reaction time is 80min and the reaction temperature is about 103~107℃.