The influence of cathodic pulse parameters was evaluated on plasma electrolytic oxidation(PEO)coatings grown on 7075 aluminum alloy in a silicate-based electrolyte containing potassium titanyl oxalate(PTO)using pulsed...The influence of cathodic pulse parameters was evaluated on plasma electrolytic oxidation(PEO)coatings grown on 7075 aluminum alloy in a silicate-based electrolyte containing potassium titanyl oxalate(PTO)using pulsed bipolar waveforms with various cathodic duty cycles and cathodic current densities.The coatings were characterized by SEM,EDS,and XRD.EIS was applied to investigate the electrochemical properties.It was observed that the increase of cathodic duty cycle and cathodic current density from 20%and 6 A/dm^(2) to 40%and 12 A/dm^(2) enhances the growth rate of the inner layer from 0.22 to 0.75μm/min.Adding PTO into the bath showed a fortifying effect on influence of the cathodic pulse and the mentioned change of cathodic pulse parameters,resulting in an increase of the inner layer growth rate from 0.25 to 1.10μm/min.Based on EDS analysis,Si and Ti were incorporated dominantly in the upper parts of the coatings.XRD technique merely detectedγ-Al_(2)O_(3),and there were no detectable peaks related to Ti and Si compounds.However,the EIS results confirmed that the incorporation of Ti^(4+)into alumina changed the electronic properties of the coating.The coatings obtained from the bath containing PTO using the bipolar waveforms with a cathodic duty cycle of 40%and current density values higher than 6 A/dm^(2) showed highly appropriate electrochemical behavior during 240 d of immersion due to an efficient repairing mechanism.Regarding the effects of studied parameters on the coating properties,the roles of cathodic pulse parameters and PTO in the PEO process were highlighted.展开更多
A ternary composite of TiO2 and a SiO2-Al2O3 aerogel with good photocatalytic activity was prepared by a simple sol-gel method with TiO2 nanoparticles and SiO2-Al2O3 aerogels derived from industrial fly ash.The struct...A ternary composite of TiO2 and a SiO2-Al2O3 aerogel with good photocatalytic activity was prepared by a simple sol-gel method with TiO2 nanoparticles and SiO2-Al2O3 aerogels derived from industrial fly ash.The structural features of the TiO2/SiO2-Al2O3 aerogel composite were investigated by X-ray powder diffraction,Fourier transform infrared spectroscopy,transmission electron microscopy,gas adsorption measurements and diffuse reflectance UV-visible spectroscopy.The optimal conditions for photocatalytic degradation of 2-sec-butyl-4,6-dinitrophenol(DNBP],included an initial DNBP concentration of 0.167 mmol/L at pH = 4.86 with a catalyst concentration of 6 g/L,under visible light irradiation for 5 h.A plausible mechanism is proposed for the photocatalytic degradation of DNBP.Our composite showed higher photocatalytic activity for DNBP degradation than that of pure TiO2.This indicates that this material can serve as an efficient photocatalyst for degradation of hazardous organic pollutants in wastewater.展开更多
In order to explore the reaction mechanism of Fe^3+ and the mineralization effect of the micropollutant, Fe^3+ assisted photocatalytic oxidation of sulfadiazine (SD) in the TiO2 suspended solution is investigated....In order to explore the reaction mechanism of Fe^3+ and the mineralization effect of the micropollutant, Fe^3+ assisted photocatalytic oxidation of sulfadiazine (SD) in the TiO2 suspended solution is investigated. The effect of Fe^3+ participation, the degradation kinetics of SD, the effect of SD mineralization and the possible mechanism of Fe^3+ participation in TiO2 suspension are analyzed by adding FeCl3, taking samples at a given time and determining the SD concentration. Results indicate that the degradation of SD catalyzed by TiO2/ Fe^3+ is faster than that catalyzed by TiO2 or Fe^3+ separately. The photocatalytic degradation of SD follows the pseudo-first- order kinetics model in a range of 20 to 80 mg/L of initial concentration. The mineralization rate of SD can be enhanced by the addition of Fe^3+ in the TiO2 suspended solution. The mechanism of the rapid degradation of SD is proposed, which indicates that Fe^3+ adsorbed on the surface of TiO2 particles acts as an electron acceptor. The amount of recombining electronhole pairs decreases, and the amount of hydroxyl radicals increases. The increased hydroxyl radical strengthens the degradation of SD in the TiO2/Fe^3+ suspended solution.展开更多
文摘The influence of cathodic pulse parameters was evaluated on plasma electrolytic oxidation(PEO)coatings grown on 7075 aluminum alloy in a silicate-based electrolyte containing potassium titanyl oxalate(PTO)using pulsed bipolar waveforms with various cathodic duty cycles and cathodic current densities.The coatings were characterized by SEM,EDS,and XRD.EIS was applied to investigate the electrochemical properties.It was observed that the increase of cathodic duty cycle and cathodic current density from 20%and 6 A/dm^(2) to 40%and 12 A/dm^(2) enhances the growth rate of the inner layer from 0.22 to 0.75μm/min.Adding PTO into the bath showed a fortifying effect on influence of the cathodic pulse and the mentioned change of cathodic pulse parameters,resulting in an increase of the inner layer growth rate from 0.25 to 1.10μm/min.Based on EDS analysis,Si and Ti were incorporated dominantly in the upper parts of the coatings.XRD technique merely detectedγ-Al_(2)O_(3),and there were no detectable peaks related to Ti and Si compounds.However,the EIS results confirmed that the incorporation of Ti^(4+)into alumina changed the electronic properties of the coating.The coatings obtained from the bath containing PTO using the bipolar waveforms with a cathodic duty cycle of 40%and current density values higher than 6 A/dm^(2) showed highly appropriate electrochemical behavior during 240 d of immersion due to an efficient repairing mechanism.Regarding the effects of studied parameters on the coating properties,the roles of cathodic pulse parameters and PTO in the PEO process were highlighted.
基金supported by the National Natural Science Foundation of China(21377018)the Natural Science Foundation of Liaoning Province of China(2013020116)the Fundamental Research Funds for the Central Universities(DUT15ZD240)~~
文摘A ternary composite of TiO2 and a SiO2-Al2O3 aerogel with good photocatalytic activity was prepared by a simple sol-gel method with TiO2 nanoparticles and SiO2-Al2O3 aerogels derived from industrial fly ash.The structural features of the TiO2/SiO2-Al2O3 aerogel composite were investigated by X-ray powder diffraction,Fourier transform infrared spectroscopy,transmission electron microscopy,gas adsorption measurements and diffuse reflectance UV-visible spectroscopy.The optimal conditions for photocatalytic degradation of 2-sec-butyl-4,6-dinitrophenol(DNBP],included an initial DNBP concentration of 0.167 mmol/L at pH = 4.86 with a catalyst concentration of 6 g/L,under visible light irradiation for 5 h.A plausible mechanism is proposed for the photocatalytic degradation of DNBP.Our composite showed higher photocatalytic activity for DNBP degradation than that of pure TiO2.This indicates that this material can serve as an efficient photocatalyst for degradation of hazardous organic pollutants in wastewater.
基金The Priority Academic Program Development of Jiangsu Higher Education Institutions (No. 1105007001 )the Ph. D. Programs Foundation of Ministry of Education of China (No. 20100092120018)the Natural Science Foundation of Jiangsu Province (No. BK2009453)
文摘In order to explore the reaction mechanism of Fe^3+ and the mineralization effect of the micropollutant, Fe^3+ assisted photocatalytic oxidation of sulfadiazine (SD) in the TiO2 suspended solution is investigated. The effect of Fe^3+ participation, the degradation kinetics of SD, the effect of SD mineralization and the possible mechanism of Fe^3+ participation in TiO2 suspension are analyzed by adding FeCl3, taking samples at a given time and determining the SD concentration. Results indicate that the degradation of SD catalyzed by TiO2/ Fe^3+ is faster than that catalyzed by TiO2 or Fe^3+ separately. The photocatalytic degradation of SD follows the pseudo-first- order kinetics model in a range of 20 to 80 mg/L of initial concentration. The mineralization rate of SD can be enhanced by the addition of Fe^3+ in the TiO2 suspended solution. The mechanism of the rapid degradation of SD is proposed, which indicates that Fe^3+ adsorbed on the surface of TiO2 particles acts as an electron acceptor. The amount of recombining electronhole pairs decreases, and the amount of hydroxyl radicals increases. The increased hydroxyl radical strengthens the degradation of SD in the TiO2/Fe^3+ suspended solution.