This study focused on the development and characterization of TiO<sub>2</sub>-PES composite fibers with varying TiO<sub>2</sub> loading amounts using a phase inversion process. The resulting co...This study focused on the development and characterization of TiO<sub>2</sub>-PES composite fibers with varying TiO<sub>2</sub> loading amounts using a phase inversion process. The resulting composite fibers exhibited a sponge-like structure with embedded TiO<sub>2</sub> nanoparticles within a polymer matrix. Their photocatalytic performance for ammonia removal from aqueous solutions under UV-A light exposure was thoroughly investigated. The findings revealed that PeTi8 composite fibers displayed superior adsorption capacity compared to other samples. Moreover, the study explored the impact of pH, light intensity, and catalyst dosage on the photocatalytic degradation of ammonia. Adsorption equilibrium isotherms closely followed the Langmuir model, with the results indicating a correlation between qm values of 2.49 mg/g and the porous structure of the adsorbents. The research underscored the efficacy of TiO<sub>2</sub> composite fibers in the photocatalytic removal of aqueous under UV-A light. Notably, increasing the distance between the photocatalyst and the light source resulted in de-creased hydroxyl radical concentration, influencing photocatalytic efficiency. These findings contribute to our understanding of TiO<sub>2</sub> composite fibers as promising photocatalysts for ammonia removal in water treatment applications.展开更多
TiO2‐based Z‐scheme photocatalysts have attracted considerable attention because of the low recombination rate of their photogenerated electron–hole pairs and their high photocatalytic efficiency.In this review,the...TiO2‐based Z‐scheme photocatalysts have attracted considerable attention because of the low recombination rate of their photogenerated electron–hole pairs and their high photocatalytic efficiency.In this review,the reaction mechanism of Z‐scheme photocatalysts,recent research progress in the application of TiO2‐based Z‐scheme photocatalysts,and improved methods for photocatalytic performance enhancement are explored.Their applications,including water splitting,CO2reduction,decomposition of volatile organic compounds,and degradation of organic pollutants,are also described.The main factors affecting the photocatalytic performance of TiO2‐based Z‐scheme photocatalysts,such as pH,conductive medium,cocatalyst,architecture,and mass ratio,are discussed.Concluding remarks are presented,and some suggestions for the future development of TiO2‐based Z‐scheme photocatalysts are highlighted.展开更多
Polyaniline (PAn) sensitized nanocrystalline TiO2 composites (TiO2/PAn) were successfully prepared and used as an efficient photocatalyst for the degradation of dye methylene blue (MB). The results showed that P...Polyaniline (PAn) sensitized nanocrystalline TiO2 composites (TiO2/PAn) were successfully prepared and used as an efficient photocatalyst for the degradation of dye methylene blue (MB). The results showed that PAn was able to sensitize TiO2 efficiently and the composite photocatalyst could be activated by absorbing both the ultraviolet and visible light (λ: 190 ~ 800 nm), whereas pure TiO2 absorbed ultraviolet light only (λ 〈 380 nm). Under the irradiation of natural light, MB could be degraded more efficiently on the TiO2/PAn composites than on the TiO2 Furthermore, it could be easily separated from the solution by simple sedimentation.展开更多
TiO2 and montmorillonite composite photocatalysts were prepared and applied in degrading γ-hexachlorocyclohexane (γ-HCH) in soils. After being spiked with γ-HCH, soil samples loaded with the composite photocataly...TiO2 and montmorillonite composite photocatalysts were prepared and applied in degrading γ-hexachlorocyclohexane (γ-HCH) in soils. After being spiked with γ-HCH, soil samples loaded with the composite photocatalysts were exposed to UV-light irradiation. The results indicated that the photocatalytic activities of the composite photocatalysts varied with the content of TiO2 in the order of 10%〈70%〈50% 〈30%, Moreover, the photocatalytic activity of the composite photocatalysts with TiO2 content 30% was higher than that of the pure P25 with the same mass of TiO2. The strong adsorption capacity of the composite photocatalysts and quantum size effect may contribute to its increased photocatalytic activities. In addition, effect of dosage of composite photocatalysts and soil pH on γ-HCH photodegradation was investigated. Pentachlorocyclohexene, trichlorocyclohexene, and dichlorobenzene were detected as photodegradation intermediates, which were gradually degraded with the photodegradation evolution.展开更多
First-principles plane-wave pseudopotential calculations are performed to study the geometrical structures, for- mation energies, and electronic and optical properties of Y-doped, N-doped, and (Y, N)-codoped Ti02. T...First-principles plane-wave pseudopotential calculations are performed to study the geometrical structures, for- mation energies, and electronic and optical properties of Y-doped, N-doped, and (Y, N)-codoped Ti02. The calculated results show that Y and N codoping leads to lattice distortion, easier separation of photogenerated electron-hole pairs and band gap narrowing. The optical absorption spectra indicate that an obvious red-shift occurs upon Y and N codoping, which enhances visible-light photocatalytic activity.展开更多
(N, F)-codoped anatase TiO2 nanocrystals with active visible light response were prepared by using a simple sol-gel approach. X-ray photoelectron spectroscopy measurements suggested that the substitutional N and F s...(N, F)-codoped anatase TiO2 nanocrystals with active visible light response were prepared by using a simple sol-gel approach. X-ray photoelectron spectroscopy measurements suggested that the substitutional N and F species replaced the lattice oxygen atoms in TiO2 nanocrystals. Such nanocrystals showed strong absorption from 400 to 550 nm, which was mainly induced by nitrogen doping. The phase transformation from anatase to rutile was hindered by fluorine doping at high calcination temperatures, which was verified by XRD patterns. The N2 adsorption-desorption isotherms revealed the absence of mesopores in these nanocrystals. The (N, F)- codoped TiO2 nanocrystals showed satisfying photocatalytic activity on the photo-degradation of methylene blue under visible light.展开更多
Trace environmental pollutants have become a serious problem with special attention on the hazardous heavy metals, refractory organics, and pathogenic microorganisms. With coupling biosorption and photocatalysis to de...Trace environmental pollutants have become a serious problem with special attention on the hazardous heavy metals, refractory organics, and pathogenic microorganisms. With coupling biosorption and photocatalysis to develop biomaterial/TiO2 composite photocatalysts is a promising method to remove these trace pollutants because of the synergistic effect. Biomaterials provide multiple function groups which can selectively and efficiently enrich trace pollutants onto the surface of the photocatalysts, thus facilitating the following transformation mediated by TiO2 photocatalysis. Biomaterials can also help the dispersion and recovery of TiO2, or even modify the band structure of TiO2. The fabrication of chitosan/TiO2, cellulose/TiO2, as well as other biomaterial/TiO2 composite photocatalysts is discussed in detail in this review. The application significance of these composite photocatalysts for the selective removal of trace pollutants is also addressed. Several problems should be solved before the realistic applications can be achieved as discussed in the final section.展开更多
The photo absorbing, photo transmitting and photoluminescence performances of WiO2 photocatalysts compounded with V2O5 or WO3 were investigated by UV-Vis spectra, transmitting spectra, and PL spectra, respectively. Th...The photo absorbing, photo transmitting and photoluminescence performances of WiO2 photocatalysts compounded with V2O5 or WO3 were investigated by UV-Vis spectra, transmitting spectra, and PL spectra, respectively. The energy band structures of TiO2 photocatalysts were analyzed. The photocatalytic activities of the TiO2 photocatalysts were investigated by splitting of water for 02 evolution. The results indicate that the band gaps of WO3 and V205 are about 2.8 and 2.14 eV, respectively, and the band gap of rutile TiO2 is about 3.08 eV. Speeds of water splitting for 2%WO3-TiO2 and 8%V2O5-TiO2 photocatalysts are 420 and 110 μmol/(L.h), respectively, under UV light irradiation. V2O5 and WO3 compounded with suitable concentration can improve the photocatalytic activity of TiO2 with Fe3+ as electron acceptor.展开更多
A high active novel TiO2/AC composite photocatalyst was prepared and used for phenol degradation. It was much more active than P-25 and exhibiting good decantability, less deactivation after several runs and less sens...A high active novel TiO2/AC composite photocatalyst was prepared and used for phenol degradation. It was much more active than P-25 and exhibiting good decantability, less deactivation after several runs and less sensitive to pH change. Diffuse reflectance spectra (DRS) revealed that the electronic change in TiO2 did not occur by the addition of AC. Results of SEM and XRD suggested that better TiO2 distribution can be achieved when optimal AC content was adopted. The performance of the prepared TiO2/5AC catalyst revealed great practical potential in wastewater treatment field.展开更多
A type of poriferous TiO2 material was prepared using cetyl trimethyl ammonium bromide as a template agent and butyl tetra titanate as a precursor. Through studying the photocatalytic kinetic activity of Rhodamine B p...A type of poriferous TiO2 material was prepared using cetyl trimethyl ammonium bromide as a template agent and butyl tetra titanate as a precursor. Through studying the photocatalytic kinetic activity of Rhodamine B photocatalytic degradation reaction with a UV-1601PC ultraviolet-visible spectrophotometer, the photocatalytic degradation process of Rhodamine B was found to not correspond to the first-order kinetic process completely. According to the reaction phenomenon, the photocatalytic degradation process of Rhodamine B with poriferous TiO2 involved two irreversible reactions. The kinetic model was tested using experimental data.展开更多
Photocatalyst CoPcS/TiO2 was prepared by sol-gel method. Composite CoPcS/TiO2/K2Ti4O9 was prepared by dipping. It was incandesced at various temperatures and modification effect was compared. The results showed that o...Photocatalyst CoPcS/TiO2 was prepared by sol-gel method. Composite CoPcS/TiO2/K2Ti4O9 was prepared by dipping. It was incandesced at various temperatures and modification effect was compared. The results showed that optical absorption of sample incandesce at 423K occurred significant red-shift. Light absorption width extended from ultraviolet region to visible region, especially there was an intensive absorption between 600 nm and 680 nm. X-ray diffraction spectrogram showed that TiO2 in sample still maintained anatase crystal form. Under the illumination of visible light, photocatalysis degradation experiment was taken with Eosin B as simulated pollutants. Decoloration rate of Eosin B was much improved. The rate can reach 80% in 300 minutes.展开更多
In this article one of the advanced oxidation processes (AOP) combined methods, photocatalyst /H2O2, is utilized in order to study photodegradation of ethylene dichloride (EDC) in water. Nano Titanium (IV) Oxide, supp...In this article one of the advanced oxidation processes (AOP) combined methods, photocatalyst /H2O2, is utilized in order to study photodegradation of ethylene dichloride (EDC) in water. Nano Titanium (IV) Oxide, supported on Clinoptilolite (CP) (Iranian natural zeolite) using solid-state dispersion (SSD) method for improvement of its photocatalytic properties. The results show that the TiO2/Clinoptilolite (SSD) is an active photocatalyst. The effects of five important photocatalytic reaction parameters including the initial concentration of ethylene dichloride, the ratio of TiO2/Clinoptilolite, the catalyst concentration, H2O2 concentration and pH in photodegradation of ethylene dichloride were examined. In this experiments, the design and also the optimum parameters were obtained by Taguchi Method, using Design Expert8®software. Taguchi's L27 (5^3) orthogonal array design was employed for the experimental plan. Four parameters were found to be significant whereas, pH was found to be an insignificant parameter after conducting experiments. A first order reaction with K = 0.007 min-1 was observed for the photocatalytic degradation reaction.展开更多
[Objective]The research aimed to study synthesis of the TiO2 photocatalyst modified by Fe/C and photodegradation of 4-t-octylphenol.[Method]Fe/C modified TiO2 photocatalyst was made by sol-gel and solvothermal synthes...[Objective]The research aimed to study synthesis of the TiO2 photocatalyst modified by Fe/C and photodegradation of 4-t-octylphenol.[Method]Fe/C modified TiO2 photocatalyst was made by sol-gel and solvothermal synthesis methods.4-t-octylphenol as test object,photocatalytic performance of the catalyst was investigated.Influences of the Fe doping amount,catalyst amount,pH and sun-light irradiation on reaction were discussed.Moreover,catalyst performance under the condition of interfering ion existence was studied.[Result]When Fe/C doping amount was 0.6%,under the reaction condition of 25 ℃,pH =9.0,300 W mercury lamp and 1.0 g/L of catalyst amount,4-t-octylphenol concentration decreased from 1.00 to 0.02 mg/L by degradation for 100 min.Rises of pH and light intensity could improve catalyst efficiency.The existences of Na +,K + and Ca2+ had no effect on degradation activity of the catalyst.[Conclusion]Fe/C modified TiO2 photocatalyst had better degradation effect on environmental hormone in the sewage.展开更多
The transition metal ion doped TiO 2 nanoparticles were prepared with hydrothermal method, and the effects of doping different metal ions on the ability of TiO 2 in photocatalyzing degradation of rhodamine B(RB) were ...The transition metal ion doped TiO 2 nanoparticles were prepared with hydrothermal method, and the effects of doping different metal ions on the ability of TiO 2 in photocatalyzing degradation of rhodamine B(RB) were studied. The results showed that the doping of Fe 3+ , Co 2+ , Ni 2+ and Cr 3+ in TiO 2 nanoparticles made the photocatalytic efficiency of the TiO 2 particles reduce and the higher the initial content of Fe 3+ , the lower the ability of TiO 2 in photocatalyzing the degradation of RB. But the doping of Zn 2+ and Cd 2+ , especially Zn 2+ , made the photocatalytic efficiency of the TiO 2 particles enhance, showing a great increase of the rate constant( k ) and the initial reaction rate( r ini ).展开更多
文摘This study focused on the development and characterization of TiO<sub>2</sub>-PES composite fibers with varying TiO<sub>2</sub> loading amounts using a phase inversion process. The resulting composite fibers exhibited a sponge-like structure with embedded TiO<sub>2</sub> nanoparticles within a polymer matrix. Their photocatalytic performance for ammonia removal from aqueous solutions under UV-A light exposure was thoroughly investigated. The findings revealed that PeTi8 composite fibers displayed superior adsorption capacity compared to other samples. Moreover, the study explored the impact of pH, light intensity, and catalyst dosage on the photocatalytic degradation of ammonia. Adsorption equilibrium isotherms closely followed the Langmuir model, with the results indicating a correlation between qm values of 2.49 mg/g and the porous structure of the adsorbents. The research underscored the efficacy of TiO<sub>2</sub> composite fibers in the photocatalytic removal of aqueous under UV-A light. Notably, increasing the distance between the photocatalyst and the light source resulted in de-creased hydroxyl radical concentration, influencing photocatalytic efficiency. These findings contribute to our understanding of TiO<sub>2</sub> composite fibers as promising photocatalysts for ammonia removal in water treatment applications.
基金supported by the National Natural Science Foundation of China(51602207,21433007,51320105001,21573170)the Self-determined and Innovative Research Funds of SKLWUT(2017-ZD-4,2016-KF-17)the Natural Science Foundation of Hubei Province of China(2015CFA001)~~
文摘TiO2‐based Z‐scheme photocatalysts have attracted considerable attention because of the low recombination rate of their photogenerated electron–hole pairs and their high photocatalytic efficiency.In this review,the reaction mechanism of Z‐scheme photocatalysts,recent research progress in the application of TiO2‐based Z‐scheme photocatalysts,and improved methods for photocatalytic performance enhancement are explored.Their applications,including water splitting,CO2reduction,decomposition of volatile organic compounds,and degradation of organic pollutants,are also described.The main factors affecting the photocatalytic performance of TiO2‐based Z‐scheme photocatalysts,such as pH,conductive medium,cocatalyst,architecture,and mass ratio,are discussed.Concluding remarks are presented,and some suggestions for the future development of TiO2‐based Z‐scheme photocatalysts are highlighted.
文摘Polyaniline (PAn) sensitized nanocrystalline TiO2 composites (TiO2/PAn) were successfully prepared and used as an efficient photocatalyst for the degradation of dye methylene blue (MB). The results showed that PAn was able to sensitize TiO2 efficiently and the composite photocatalyst could be activated by absorbing both the ultraviolet and visible light (λ: 190 ~ 800 nm), whereas pure TiO2 absorbed ultraviolet light only (λ 〈 380 nm). Under the irradiation of natural light, MB could be degraded more efficiently on the TiO2/PAn composites than on the TiO2 Furthermore, it could be easily separated from the solution by simple sedimentation.
基金Project supported by the National Natural Science Foundation of China(No. 29977003, 20507011)the State Ministry of Education of China(No. 00028)
文摘TiO2 and montmorillonite composite photocatalysts were prepared and applied in degrading γ-hexachlorocyclohexane (γ-HCH) in soils. After being spiked with γ-HCH, soil samples loaded with the composite photocatalysts were exposed to UV-light irradiation. The results indicated that the photocatalytic activities of the composite photocatalysts varied with the content of TiO2 in the order of 10%〈70%〈50% 〈30%, Moreover, the photocatalytic activity of the composite photocatalysts with TiO2 content 30% was higher than that of the pure P25 with the same mass of TiO2. The strong adsorption capacity of the composite photocatalysts and quantum size effect may contribute to its increased photocatalytic activities. In addition, effect of dosage of composite photocatalysts and soil pH on γ-HCH photodegradation was investigated. Pentachlorocyclohexene, trichlorocyclohexene, and dichlorobenzene were detected as photodegradation intermediates, which were gradually degraded with the photodegradation evolution.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10647008, 50971099, and 21176199)the Research Fund for the Doctoral Program of Higher Education, China (Grant Nos. 20096101110017 and 20096101110013)+1 种基金the Key Project of the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2010JZ002 and 2011JM1001)the Graduate Innovation Fund of Northwest University, China (Grant No. 10YZZ38)
文摘First-principles plane-wave pseudopotential calculations are performed to study the geometrical structures, for- mation energies, and electronic and optical properties of Y-doped, N-doped, and (Y, N)-codoped Ti02. The calculated results show that Y and N codoping leads to lattice distortion, easier separation of photogenerated electron-hole pairs and band gap narrowing. The optical absorption spectra indicate that an obvious red-shift occurs upon Y and N codoping, which enhances visible-light photocatalytic activity.
基金supported by the Excellent Young Teachers Program of MOEKey Project of Shanghai Science and Technology Committee (No. 06DZ05025),China
文摘(N, F)-codoped anatase TiO2 nanocrystals with active visible light response were prepared by using a simple sol-gel approach. X-ray photoelectron spectroscopy measurements suggested that the substitutional N and F species replaced the lattice oxygen atoms in TiO2 nanocrystals. Such nanocrystals showed strong absorption from 400 to 550 nm, which was mainly induced by nitrogen doping. The phase transformation from anatase to rutile was hindered by fluorine doping at high calcination temperatures, which was verified by XRD patterns. The N2 adsorption-desorption isotherms revealed the absence of mesopores in these nanocrystals. The (N, F)- codoped TiO2 nanocrystals showed satisfying photocatalytic activity on the photo-degradation of methylene blue under visible light.
基金Supported by the National Natural Science Foundation of China(21525625,21838001)the National Basic Research Program(973 Program)of China(2014CB745100)+1 种基金the(863)High Technology Project of China(2013AA020302)the Chinese Universities Scientific Fund(JD1417)
文摘Trace environmental pollutants have become a serious problem with special attention on the hazardous heavy metals, refractory organics, and pathogenic microorganisms. With coupling biosorption and photocatalysis to develop biomaterial/TiO2 composite photocatalysts is a promising method to remove these trace pollutants because of the synergistic effect. Biomaterials provide multiple function groups which can selectively and efficiently enrich trace pollutants onto the surface of the photocatalysts, thus facilitating the following transformation mediated by TiO2 photocatalysis. Biomaterials can also help the dispersion and recovery of TiO2, or even modify the band structure of TiO2. The fabrication of chitosan/TiO2, cellulose/TiO2, as well as other biomaterial/TiO2 composite photocatalysts is discussed in detail in this review. The application significance of these composite photocatalysts for the selective removal of trace pollutants is also addressed. Several problems should be solved before the realistic applications can be achieved as discussed in the final section.
基金Project(11JJ5010) supported by the Natural Science Foundation of Hunan Province, ChinaProject(2011RS4069) supported by the Planned Science and Technology Program of Hunan Province, ChinaProject supported by the Postdoctoral Science Foundation of Central South University,China
文摘The photo absorbing, photo transmitting and photoluminescence performances of WiO2 photocatalysts compounded with V2O5 or WO3 were investigated by UV-Vis spectra, transmitting spectra, and PL spectra, respectively. The energy band structures of TiO2 photocatalysts were analyzed. The photocatalytic activities of the TiO2 photocatalysts were investigated by splitting of water for 02 evolution. The results indicate that the band gaps of WO3 and V205 are about 2.8 and 2.14 eV, respectively, and the band gap of rutile TiO2 is about 3.08 eV. Speeds of water splitting for 2%WO3-TiO2 and 8%V2O5-TiO2 photocatalysts are 420 and 110 μmol/(L.h), respectively, under UV light irradiation. V2O5 and WO3 compounded with suitable concentration can improve the photocatalytic activity of TiO2 with Fe3+ as electron acceptor.
基金This project was financially supported by Specialized Research Fund for the Doctoral Program of Higher Education (No. 20050225006)the National Natural Science Foundation of China (No. 30400339).
文摘A high active novel TiO2/AC composite photocatalyst was prepared and used for phenol degradation. It was much more active than P-25 and exhibiting good decantability, less deactivation after several runs and less sensitive to pH change. Diffuse reflectance spectra (DRS) revealed that the electronic change in TiO2 did not occur by the addition of AC. Results of SEM and XRD suggested that better TiO2 distribution can be achieved when optimal AC content was adopted. The performance of the prepared TiO2/5AC catalyst revealed great practical potential in wastewater treatment field.
文摘A type of poriferous TiO2 material was prepared using cetyl trimethyl ammonium bromide as a template agent and butyl tetra titanate as a precursor. Through studying the photocatalytic kinetic activity of Rhodamine B photocatalytic degradation reaction with a UV-1601PC ultraviolet-visible spectrophotometer, the photocatalytic degradation process of Rhodamine B was found to not correspond to the first-order kinetic process completely. According to the reaction phenomenon, the photocatalytic degradation process of Rhodamine B with poriferous TiO2 involved two irreversible reactions. The kinetic model was tested using experimental data.
基金Acknowledgements: This project is supported by the fund of the Plan of Postgraduate Scientific Research Innovation of Jiangsu Province (No. CX07B_175z) and the Natural Science Foundation of Henan Province (No. 0624720029).
文摘Photocatalyst CoPcS/TiO2 was prepared by sol-gel method. Composite CoPcS/TiO2/K2Ti4O9 was prepared by dipping. It was incandesced at various temperatures and modification effect was compared. The results showed that optical absorption of sample incandesce at 423K occurred significant red-shift. Light absorption width extended from ultraviolet region to visible region, especially there was an intensive absorption between 600 nm and 680 nm. X-ray diffraction spectrogram showed that TiO2 in sample still maintained anatase crystal form. Under the illumination of visible light, photocatalysis degradation experiment was taken with Eosin B as simulated pollutants. Decoloration rate of Eosin B was much improved. The rate can reach 80% in 300 minutes.
文摘In this article one of the advanced oxidation processes (AOP) combined methods, photocatalyst /H2O2, is utilized in order to study photodegradation of ethylene dichloride (EDC) in water. Nano Titanium (IV) Oxide, supported on Clinoptilolite (CP) (Iranian natural zeolite) using solid-state dispersion (SSD) method for improvement of its photocatalytic properties. The results show that the TiO2/Clinoptilolite (SSD) is an active photocatalyst. The effects of five important photocatalytic reaction parameters including the initial concentration of ethylene dichloride, the ratio of TiO2/Clinoptilolite, the catalyst concentration, H2O2 concentration and pH in photodegradation of ethylene dichloride were examined. In this experiments, the design and also the optimum parameters were obtained by Taguchi Method, using Design Expert8®software. Taguchi's L27 (5^3) orthogonal array design was employed for the experimental plan. Four parameters were found to be significant whereas, pH was found to be an insignificant parameter after conducting experiments. A first order reaction with K = 0.007 min-1 was observed for the photocatalytic degradation reaction.
基金Supported by National Natural Science Foundation Item (41076097,41006097,41106113)Innovation Engagement Fund of Yangzhou University (2011CXJ032,2011CXJ036)
文摘[Objective]The research aimed to study synthesis of the TiO2 photocatalyst modified by Fe/C and photodegradation of 4-t-octylphenol.[Method]Fe/C modified TiO2 photocatalyst was made by sol-gel and solvothermal synthesis methods.4-t-octylphenol as test object,photocatalytic performance of the catalyst was investigated.Influences of the Fe doping amount,catalyst amount,pH and sun-light irradiation on reaction were discussed.Moreover,catalyst performance under the condition of interfering ion existence was studied.[Result]When Fe/C doping amount was 0.6%,under the reaction condition of 25 ℃,pH =9.0,300 W mercury lamp and 1.0 g/L of catalyst amount,4-t-octylphenol concentration decreased from 1.00 to 0.02 mg/L by degradation for 100 min.Rises of pH and light intensity could improve catalyst efficiency.The existences of Na +,K + and Ca2+ had no effect on degradation activity of the catalyst.[Conclusion]Fe/C modified TiO2 photocatalyst had better degradation effect on environmental hormone in the sewage.
文摘The transition metal ion doped TiO 2 nanoparticles were prepared with hydrothermal method, and the effects of doping different metal ions on the ability of TiO 2 in photocatalyzing degradation of rhodamine B(RB) were studied. The results showed that the doping of Fe 3+ , Co 2+ , Ni 2+ and Cr 3+ in TiO 2 nanoparticles made the photocatalytic efficiency of the TiO 2 particles reduce and the higher the initial content of Fe 3+ , the lower the ability of TiO 2 in photocatalyzing the degradation of RB. But the doping of Zn 2+ and Cd 2+ , especially Zn 2+ , made the photocatalytic efficiency of the TiO 2 particles enhance, showing a great increase of the rate constant( k ) and the initial reaction rate( r ini ).