Membrane fouling is one of the major obstacles for reaching a high flux over a prolonged period of ultrafiltration(UF)process.In this study,a sulfonated-polyethersulfone(SPES)/nano-TiO2 composite UF membrane with ...Membrane fouling is one of the major obstacles for reaching a high flux over a prolonged period of ultrafiltration(UF)process.In this study,a sulfonated-polyethersulfone(SPES)/nano-TiO2 composite UF membrane with good anti-fouling performance was fabricated by phase inversion and self-assembly methods.The TiO2 nanoparticle self-assembly on the SPES membrane surface was confirmed by X-ray photoelectron spectroscopy (XPS)and FT-IR spectrometer.The morphology and hydrophilicity were characterized by scanning electron microscopy(SEM),atomic force microscopy(AFM)and contact angle goniometer,respectively.The anti-fouling mechanism of composite UF membrane was discussed through the analysis of the micro-structure and component of UF membrane surface.The results showed that the TiO2 content and the micro-structure of the composite UF membrane surface had great influence on the separation and anti-fouling performance.展开更多
The effects of sintering atmosphere on the properties of symmetric TiO2 membranes are studied with regard to sintering behavior, porosity, mean pore size, surface comPosition. and surface charge properties. The exerim...The effects of sintering atmosphere on the properties of symmetric TiO2 membranes are studied with regard to sintering behavior, porosity, mean pore size, surface comPosition. and surface charge properties. The exerimental results show that the symmetric TiO2 membranes display better sintering activity in the air than in argon, and the mean pore diameters and porosities of the membrane sintered in argon are higher than those of the membrane sintered in the air at the same temperature. The surface compositions of the symmetric TiO2 membrane sintered in the air and in argon at different temperatures, as studied by X-ray photoelectron spectroscopy, are discussed in terms of their chemical composition, with particular emphasis on the valence state of the titanium ions. The correlation between the valence state of the titanium ions at the surface and the surface charge properties is examined.It is found that the presence of Ti^3+, introduced at the surface of the symmetric TiO2 membranes by sintering in a lower partial pressure of oxygen, is related to a significant decrease in the isoelectric point. TiO2 with Ti^4+ at the interface has an isoelectric point of 5.1, but the non-stoichiometric TiO2-x with Ti^3+ at the interface has a lower isoelectric point of 3.6.展开更多
The wettability of the membrane surface has shown obvious influent on the separation performance of the membrane.In this work,a hydrophilic PDA-[PDDA/TiO2]+Cl-membrane was prepared by a one-step codeposition of poly(d...The wettability of the membrane surface has shown obvious influent on the separation performance of the membrane.In this work,a hydrophilic PDA-[PDDA/TiO2]+Cl-membrane was prepared by a one-step codeposition of poly(diallyldimethylammonium chloride)(PDDA)polyelectrolyte solution containing positively charged TiO2@PDDA nanoparticles with the assistance of dopamine(DA).Such positively charged membrane can be transformed into a hydrophobic membrane PDA-[PDDA/TiO2]+PFO-via the counterion exchange between Cl-and PFO-(perfluorooctanoate).The transformation between hydrophilicity and hydrophobicity is reversible.For both hydrophilic and hydrophobic membranes,the nanofiltration performances were respectively investigated by the aqueous solution and ethanol solution of dyes including methyl blue(MB),Congo red(CR)and Evans blue(EB),and as well metal salt aqueous solution.The consecutive running stability and anti-fouling performance of both hydrophilic and hydrophobic membranes were explored.The results revealed that both membranes showed high nanofiltration performances for retention of dyes in(non)aqueous solution.For the hydrophilic membrane,the rejection of salts in a sequence is MgSO4>Na2SO4>MgCl2>NaCl.Moreover,both of the hydrophilic and hydrophobic membranes showed high stability and antifouling property.展开更多
The degradation of fulvic acid(FA) by nanoparticle TiO2 in a submerged membrane photocatalysis(SMPC) reactor was studied. In this reactor, photocatalytic oxidation and membrane separation co-occured. The continuou...The degradation of fulvic acid(FA) by nanoparticle TiO2 in a submerged membrane photocatalysis(SMPC) reactor was studied. In this reactor, photocatalytic oxidation and membrane separation co-occured. The continuous air supplier provided O2 for the photocatalytical reaction and mixed the solution through an airflow controller. The particle TiO2 could automatically settle due to gravity without particle agglomeration so it could be easily separated by microfiltration(MF) membrane. It was efficient to maintain high flux of membranes. The effects of operational parameters on the photocatalytic oxidation rate of FA were investigated. Results indicated that photocatalyst at 0.5 g/L and airflow at 0.06 m^3/h were the optimum condition for the removal of fulvic acid, the removal efficiency was higher in acid media than that in alkaline media. The effects of different filtration duration on permeate flux rate of MF with P25 powder and with nanoparticle TiO2 were compared. Experimental results indicated that the permeate flux rate of MF was improved and the membrane fouling phenomenon was reduced with the addition of nanoparticle TiO2 catalyst compared with conventional P25 powder. Therefore, this submerged membrane photocatalysis reactor can faciliate potential application of photocatalytic oxidation process in drinking water treatment.展开更多
This study evaluates the adsorption ability ofbisphenol A(BPA) on titanium dioxide(TiO2) and its effect on the photocatalysis by advanced oxidation process using UV radiation and TiO2 photocatalyst. Degradation of...This study evaluates the adsorption ability ofbisphenol A(BPA) on titanium dioxide(TiO2) and its effect on the photocatalysis by advanced oxidation process using UV radiation and TiO2 photocatalyst. Degradation of BPA was also evaluated for the system without adsorption prior to photocatalytic reaction. The separation of TiO2 from BPA solution treated by pilot-scale photocatalytic reactor (capacity 0.16 m^3) was studied using submerged ultrafiltration (UF) membrane. It was found that although adsorption capacity of BPA was not high, adsorption played an important role in improving the efficiency ofphotocatalysis. On the other hand, during the separation of TiO2 particles from aqueous suspension, the permeate flux of the membrane was strongly affected by transmembrane pressure and TiO2 dose. The permeate turbidity was decreased below 1 NTU.展开更多
Al 2O 3-SiO 2-TiO 2-ZrO 2 supported membranes were prepar ed by Sol-Gel method. These composite ceramic membranes are level, even and no macro crack. There exist several crystalline phases such as Al 2O 3, TiO...Al 2O 3-SiO 2-TiO 2-ZrO 2 supported membranes were prepar ed by Sol-Gel method. These composite ceramic membranes are level, even and no macro crack. There exist several crystalline phases such as Al 2O 3, TiO 2(a natase), Al 2SiO 5, and ZrO 2 in these membranes. Changing the molar ratio of Al∶Si∶Ti∶Zr,the kinds and content of crystal phases of composite membranes could be different, which may lead to a variety of microstructure of membranes. The surface nanoscale topography and microstructure of membranes were investiga ted by XRD,SEM,AFM,EPMA. The effects of additives and heat treatments on the sur face nanoscale topography and microstructure of composite ceramic membranes were also analyzed.展开更多
Al2O3 ceramic powder was applied to modify the large pores defects on the surface of the porous metal Ti support,in situ oxidation method was a convenient method to prepare defect free ceramic/Ti composite membranes o...Al2O3 ceramic powder was applied to modify the large pores defects on the surface of the porous metal Ti support,in situ oxidation method was a convenient method to prepare defect free ceramic/Ti composite membranes on this basis.In situ oxidation conditions experimental results show that the best condition for preparing the TiO2-Al2O3/Ti composite membrane is under 800°C for 2 h,and the microstructure and pore sizes of the TiO2-Al2O3/Ti composite membranes are affected obviously.The thickness and composition of the TiO2/Ti composite membranes are determined by SEM and XRD completely.The pore size distribution of the composite membrane is measured by bubble pressure method,the most probable aperture is about 3.12μm,while the average pore size of defect free TiO2-Al2O3/Ti is about 3.23μm.After ultrasonic treatment,the slight weight change of membranes reveals no observable change,which indicates that TiO2-Al2O3/Ti composite membranes maintain a good stability.展开更多
In the present study,nano-sized TiO2 /Al2O3 modified PVDF membranes (MM) were fabricated and utilized for anionic polyacrylamide ( APAM) separation. The results showed that,compared with PVDF membrane (OM) ,the contac...In the present study,nano-sized TiO2 /Al2O3 modified PVDF membranes (MM) were fabricated and utilized for anionic polyacrylamide ( APAM) separation. The results showed that,compared with PVDF membrane (OM) ,the contact angle of MM decreases from 83. 64° to 67. 42°,which indicates the increase of the hydrophilicity of MM. The relative flux (RF) decline curve of this ultrafiltration of APAM in water with time shows an obvious two stage properties. The cake filtration models were used to predict the performance of different time over the complete range of filtration times. All the four cake models could simulate this UF process to a certain extent,and the suitability of the two kinds of membranes was: cake filtration > intermediate pore blocking > standard pore blocking > complete pore blocking models. However,they became more and more unsuited to this process with time extending. Surface and cross-sectional morphology of membrane was investigated by SEM to make an advanced certificate of this UF mechanism.展开更多
A new method of determining the cumulate concentration of hydroxyl radicals in the TiO2/Ti photoelectrocatalytic(PEC) oxidation system was established by o-phenanthroline-Fe(Ⅱ)(Fe(phen)3^2+) spectrophotometr...A new method of determining the cumulate concentration of hydroxyl radicals in the TiO2/Ti photoelectrocatalytic(PEC) oxidation system was established by o-phenanthroline-Fe(Ⅱ)(Fe(phen)3^2+) spectrophotometry and using anion exchange membrane. Fe (phen)3^2+ can be oxidized to o-phenanthroline-Fe(Ⅲ)(Fe(phen)3^3+) by strong oxidization of hydroxyl radicals(·OH). Then the cumulate concentration of hydroxyl radicals can be calculated through determining the change of the Fe(phen)3^3+ absorbency at 509 nm. In addition, the research results showed the production rate of hydroxyl radicals was affected obviously by pH of solution, the cumulate concentration of hydroxyl radicals was the largest at nearby the initial pH 6.3 (isoelectric point), and the change direction of pH after illumination tended to nearby isoelectric point.展开更多
基金Supported by the Natural Science Foundation of Shandong Province(Q2007B01)
文摘Membrane fouling is one of the major obstacles for reaching a high flux over a prolonged period of ultrafiltration(UF)process.In this study,a sulfonated-polyethersulfone(SPES)/nano-TiO2 composite UF membrane with good anti-fouling performance was fabricated by phase inversion and self-assembly methods.The TiO2 nanoparticle self-assembly on the SPES membrane surface was confirmed by X-ray photoelectron spectroscopy (XPS)and FT-IR spectrometer.The morphology and hydrophilicity were characterized by scanning electron microscopy(SEM),atomic force microscopy(AFM)and contact angle goniometer,respectively.The anti-fouling mechanism of composite UF membrane was discussed through the analysis of the micro-structure and component of UF membrane surface.The results showed that the TiO2 content and the micro-structure of the composite UF membrane surface had great influence on the separation and anti-fouling performance.
基金Supported by the National-Basic Research Program of China (2003CB615707) and the National Natural Science Foundation of China (20636020).
文摘The effects of sintering atmosphere on the properties of symmetric TiO2 membranes are studied with regard to sintering behavior, porosity, mean pore size, surface comPosition. and surface charge properties. The exerimental results show that the symmetric TiO2 membranes display better sintering activity in the air than in argon, and the mean pore diameters and porosities of the membrane sintered in argon are higher than those of the membrane sintered in the air at the same temperature. The surface compositions of the symmetric TiO2 membrane sintered in the air and in argon at different temperatures, as studied by X-ray photoelectron spectroscopy, are discussed in terms of their chemical composition, with particular emphasis on the valence state of the titanium ions. The correlation between the valence state of the titanium ions at the surface and the surface charge properties is examined.It is found that the presence of Ti^3+, introduced at the surface of the symmetric TiO2 membranes by sintering in a lower partial pressure of oxygen, is related to a significant decrease in the isoelectric point. TiO2 with Ti^4+ at the interface has an isoelectric point of 5.1, but the non-stoichiometric TiO2-x with Ti^3+ at the interface has a lower isoelectric point of 3.6.
基金financially supported by the National Natural Science Foundation of China(21476005,21878003)the National Natural Science Fund for Innovative Research Groups(51621003)。
文摘The wettability of the membrane surface has shown obvious influent on the separation performance of the membrane.In this work,a hydrophilic PDA-[PDDA/TiO2]+Cl-membrane was prepared by a one-step codeposition of poly(diallyldimethylammonium chloride)(PDDA)polyelectrolyte solution containing positively charged TiO2@PDDA nanoparticles with the assistance of dopamine(DA).Such positively charged membrane can be transformed into a hydrophobic membrane PDA-[PDDA/TiO2]+PFO-via the counterion exchange between Cl-and PFO-(perfluorooctanoate).The transformation between hydrophilicity and hydrophobicity is reversible.For both hydrophilic and hydrophobic membranes,the nanofiltration performances were respectively investigated by the aqueous solution and ethanol solution of dyes including methyl blue(MB),Congo red(CR)and Evans blue(EB),and as well metal salt aqueous solution.The consecutive running stability and anti-fouling performance of both hydrophilic and hydrophobic membranes were explored.The results revealed that both membranes showed high nanofiltration performances for retention of dyes in(non)aqueous solution.For the hydrophilic membrane,the rejection of salts in a sequence is MgSO4>Na2SO4>MgCl2>NaCl.Moreover,both of the hydrophilic and hydrophobic membranes showed high stability and antifouling property.
文摘The degradation of fulvic acid(FA) by nanoparticle TiO2 in a submerged membrane photocatalysis(SMPC) reactor was studied. In this reactor, photocatalytic oxidation and membrane separation co-occured. The continuous air supplier provided O2 for the photocatalytical reaction and mixed the solution through an airflow controller. The particle TiO2 could automatically settle due to gravity without particle agglomeration so it could be easily separated by microfiltration(MF) membrane. It was efficient to maintain high flux of membranes. The effects of operational parameters on the photocatalytic oxidation rate of FA were investigated. Results indicated that photocatalyst at 0.5 g/L and airflow at 0.06 m^3/h were the optimum condition for the removal of fulvic acid, the removal efficiency was higher in acid media than that in alkaline media. The effects of different filtration duration on permeate flux rate of MF with P25 powder and with nanoparticle TiO2 were compared. Experimental results indicated that the permeate flux rate of MF was improved and the membrane fouling phenomenon was reduced with the addition of nanoparticle TiO2 catalyst compared with conventional P25 powder. Therefore, this submerged membrane photocatalysis reactor can faciliate potential application of photocatalytic oxidation process in drinking water treatment.
文摘This study evaluates the adsorption ability ofbisphenol A(BPA) on titanium dioxide(TiO2) and its effect on the photocatalysis by advanced oxidation process using UV radiation and TiO2 photocatalyst. Degradation of BPA was also evaluated for the system without adsorption prior to photocatalytic reaction. The separation of TiO2 from BPA solution treated by pilot-scale photocatalytic reactor (capacity 0.16 m^3) was studied using submerged ultrafiltration (UF) membrane. It was found that although adsorption capacity of BPA was not high, adsorption played an important role in improving the efficiency ofphotocatalysis. On the other hand, during the separation of TiO2 particles from aqueous suspension, the permeate flux of the membrane was strongly affected by transmembrane pressure and TiO2 dose. The permeate turbidity was decreased below 1 NTU.
文摘Al 2O 3-SiO 2-TiO 2-ZrO 2 supported membranes were prepar ed by Sol-Gel method. These composite ceramic membranes are level, even and no macro crack. There exist several crystalline phases such as Al 2O 3, TiO 2(a natase), Al 2SiO 5, and ZrO 2 in these membranes. Changing the molar ratio of Al∶Si∶Ti∶Zr,the kinds and content of crystal phases of composite membranes could be different, which may lead to a variety of microstructure of membranes. The surface nanoscale topography and microstructure of membranes were investiga ted by XRD,SEM,AFM,EPMA. The effects of additives and heat treatments on the sur face nanoscale topography and microstructure of composite ceramic membranes were also analyzed.
基金Projects(212006065,21666018)supported by the National Natural Science Foundation of China
文摘Al2O3 ceramic powder was applied to modify the large pores defects on the surface of the porous metal Ti support,in situ oxidation method was a convenient method to prepare defect free ceramic/Ti composite membranes on this basis.In situ oxidation conditions experimental results show that the best condition for preparing the TiO2-Al2O3/Ti composite membrane is under 800°C for 2 h,and the microstructure and pore sizes of the TiO2-Al2O3/Ti composite membranes are affected obviously.The thickness and composition of the TiO2/Ti composite membranes are determined by SEM and XRD completely.The pore size distribution of the composite membrane is measured by bubble pressure method,the most probable aperture is about 3.12μm,while the average pore size of defect free TiO2-Al2O3/Ti is about 3.23μm.After ultrasonic treatment,the slight weight change of membranes reveals no observable change,which indicates that TiO2-Al2O3/Ti composite membranes maintain a good stability.
基金Sponsored by the National Natural Science Foundation of China (Grant No.50978068)International Cooperation Program (Grant No.2010DFA92460)+1 种基金National High Technology Research and Development Program of China (863 Program,Grant No.2008AA06Z304)Tianjin Key Laboratory of Aquatic Science and Technology
文摘In the present study,nano-sized TiO2 /Al2O3 modified PVDF membranes (MM) were fabricated and utilized for anionic polyacrylamide ( APAM) separation. The results showed that,compared with PVDF membrane (OM) ,the contact angle of MM decreases from 83. 64° to 67. 42°,which indicates the increase of the hydrophilicity of MM. The relative flux (RF) decline curve of this ultrafiltration of APAM in water with time shows an obvious two stage properties. The cake filtration models were used to predict the performance of different time over the complete range of filtration times. All the four cake models could simulate this UF process to a certain extent,and the suitability of the two kinds of membranes was: cake filtration > intermediate pore blocking > standard pore blocking > complete pore blocking models. However,they became more and more unsuited to this process with time extending. Surface and cross-sectional morphology of membrane was investigated by SEM to make an advanced certificate of this UF mechanism.
文摘A new method of determining the cumulate concentration of hydroxyl radicals in the TiO2/Ti photoelectrocatalytic(PEC) oxidation system was established by o-phenanthroline-Fe(Ⅱ)(Fe(phen)3^2+) spectrophotometry and using anion exchange membrane. Fe (phen)3^2+ can be oxidized to o-phenanthroline-Fe(Ⅲ)(Fe(phen)3^3+) by strong oxidization of hydroxyl radicals(·OH). Then the cumulate concentration of hydroxyl radicals can be calculated through determining the change of the Fe(phen)3^3+ absorbency at 509 nm. In addition, the research results showed the production rate of hydroxyl radicals was affected obviously by pH of solution, the cumulate concentration of hydroxyl radicals was the largest at nearby the initial pH 6.3 (isoelectric point), and the change direction of pH after illumination tended to nearby isoelectric point.