TiO2-coated activated carbon surface (TAs) composites were prepared by a sol-gel method with supercritical pretreatment. The photocatalytic degradation of acid yellow (AY) was investigated under UV radiation to es...TiO2-coated activated carbon surface (TAs) composites were prepared by a sol-gel method with supercritical pretreatment. The photocatalytic degradation of acid yellow (AY) was investigated under UV radiation to estimate activity of catalysts and determine the kinetics. And the effects of parameters including the initial concentration of AY, light intensity and TiO2 content in catalysts were examined. The results indicate that TAs has a higher efficiency in decomposition of AY than P25, pure TiO2 particles as well as the mixture of TiO2 powder and active carbon. The photocatalytic degradation rate is found to follow the pseudo-first order kinetics with respect to the AY concentration. The new kinetic model fairly resembles the classic Langmuir-Hinshelwood equation, and the rate constant is proportional to the square root of the light intensity in a wide range. However, its absorption performance depends on the surface areas of catalysts. The model fits quite well with the experimental data and elucidates phenomena about the effects of the TiO2 content in TAs on the degradation rate.展开更多
In order to enhance Ni-EDTA decomplexation and Ni recovery via photoelectrocatalytic (PEC)process,TiO_(2)/Ni-Sb-SnO_(2)bifunctional electrode was fabricated as the photoanode and activated carbon fiber (ACF) was intro...In order to enhance Ni-EDTA decomplexation and Ni recovery via photoelectrocatalytic (PEC)process,TiO_(2)/Ni-Sb-SnO_(2)bifunctional electrode was fabricated as the photoanode and activated carbon fiber (ACF) was introduced as the cathode.At a cell voltage of 3.5 V and initial solution pH of 6.3,the TiO_(2)/Ni-Sb-SnO_(2)bifunctional photoanode exhibited a synergetic effect on the decomplexation of Ni-EDTA with the pseudo-first-order rate constant of 0.01068 min^(-1)with 180 min by using stainless steel (SS) cathode,which was 1.5 and 2.4times higher than that of TiO_(2)photoanode and Ni-Sb-SnO_(2)anode,respectively.Moreover,both the efficiencies of Ni-EDTA decomplexation and Ni recovery were improved to 98%from 86%and 73%from 41%after replacing SS cathode with ACF cathode,respectively.Influencing factors on Ni-EDTA decomplexation and Ni recovery were investigated and the efficiencies were favored at acidic condition,higher cell voltage and lower initial Ni-EDTA concentration.Ni-EDTA was mainly decomposed via·OH radicals which generated via the interaction of O_(3),H_(2)O_(2),and UV irradiation in the contrasted PEC system.Then,the liberated Ni^(2+)ions which liberated from Ni-EDTA decomplexation were eventually reduced to metallic Ni on the ACF cathode surface.Finally,the stability of the constructed PEC system on Ni-EDTA decomplexation and Ni recovery was exhibited.展开更多
Reducing the ever-growing level of CO_(2)in the atmosphere is critical for the sustainable development of human society in the context of global warming.Integration of the capture and upgrading of CO_(2)is,therefore,h...Reducing the ever-growing level of CO_(2)in the atmosphere is critical for the sustainable development of human society in the context of global warming.Integration of the capture and upgrading of CO_(2)is,therefore,highly desirable since each process step is costly,both energetically and economically.Here,we report a CO_(2)direct air capture(DAC)and fixation process that produces methane.Low concentrations of CO_(2)(∼400 ppm)in the air are captured by an aqueous solution of sodium hydroxide to form carbonate.The carbonate is subsequently hydrogenated to methane,which is easily separated from the reaction system,catalyzed by TiO2-supported Ru in the aqueous phase with a selectivity of 99.9%among gas-phase products.The concurrent regenerated hydroxide,in turn,increases the alkalinity of the aqueous solution for further CO_(2)capture,thereby enabling this one-ofits-kind continuous CO_(2)capture and methanation process.Engineering simulations demonstrate the energy feasibility of this CO_(2)DAC and methanation process,highlighting its promise for potential largescale applications.展开更多
基金Project(50802034) supported by the National Natural Science Foundation of ChinaProject(11A093) supported by the Key Project Foundation by the Education Department of Hunan Province,China
文摘TiO2-coated activated carbon surface (TAs) composites were prepared by a sol-gel method with supercritical pretreatment. The photocatalytic degradation of acid yellow (AY) was investigated under UV radiation to estimate activity of catalysts and determine the kinetics. And the effects of parameters including the initial concentration of AY, light intensity and TiO2 content in catalysts were examined. The results indicate that TAs has a higher efficiency in decomposition of AY than P25, pure TiO2 particles as well as the mixture of TiO2 powder and active carbon. The photocatalytic degradation rate is found to follow the pseudo-first order kinetics with respect to the AY concentration. The new kinetic model fairly resembles the classic Langmuir-Hinshelwood equation, and the rate constant is proportional to the square root of the light intensity in a wide range. However, its absorption performance depends on the surface areas of catalysts. The model fits quite well with the experimental data and elucidates phenomena about the effects of the TiO2 content in TAs on the degradation rate.
基金supported by the China Postdoctoral Science Foundation (No.2020M680710)the National Natural Science Foundation of China (No.22106173)。
文摘In order to enhance Ni-EDTA decomplexation and Ni recovery via photoelectrocatalytic (PEC)process,TiO_(2)/Ni-Sb-SnO_(2)bifunctional electrode was fabricated as the photoanode and activated carbon fiber (ACF) was introduced as the cathode.At a cell voltage of 3.5 V and initial solution pH of 6.3,the TiO_(2)/Ni-Sb-SnO_(2)bifunctional photoanode exhibited a synergetic effect on the decomplexation of Ni-EDTA with the pseudo-first-order rate constant of 0.01068 min^(-1)with 180 min by using stainless steel (SS) cathode,which was 1.5 and 2.4times higher than that of TiO_(2)photoanode and Ni-Sb-SnO_(2)anode,respectively.Moreover,both the efficiencies of Ni-EDTA decomplexation and Ni recovery were improved to 98%from 86%and 73%from 41%after replacing SS cathode with ACF cathode,respectively.Influencing factors on Ni-EDTA decomplexation and Ni recovery were investigated and the efficiencies were favored at acidic condition,higher cell voltage and lower initial Ni-EDTA concentration.Ni-EDTA was mainly decomposed via·OH radicals which generated via the interaction of O_(3),H_(2)O_(2),and UV irradiation in the contrasted PEC system.Then,the liberated Ni^(2+)ions which liberated from Ni-EDTA decomplexation were eventually reduced to metallic Ni on the ACF cathode surface.Finally,the stability of the constructed PEC system on Ni-EDTA decomplexation and Ni recovery was exhibited.
基金the Natural Science Foundation of China(grant nos.21725301,21932002,21821004,91645115,51872008,22172183,22172150,and 22222306)the National Key R&D Program of China(grant nos.2017YFB060220 and 2021YFA-1502804)+3 种基金the Beijing Outstanding Young Scientists Projects(grant nos.BJJWZYJH01201910005018 and BJJWZYJH01201914430039)the Strategic Priority Research Program of the Chinese Academy of Science(grant no.XDB0450102)the K.C.Wong Education Foundation(grant no.GJTD-2020-15)the Innovation Program for Quantum Science and Technology(grant no.2021ZD0303302).
文摘Reducing the ever-growing level of CO_(2)in the atmosphere is critical for the sustainable development of human society in the context of global warming.Integration of the capture and upgrading of CO_(2)is,therefore,highly desirable since each process step is costly,both energetically and economically.Here,we report a CO_(2)direct air capture(DAC)and fixation process that produces methane.Low concentrations of CO_(2)(∼400 ppm)in the air are captured by an aqueous solution of sodium hydroxide to form carbonate.The carbonate is subsequently hydrogenated to methane,which is easily separated from the reaction system,catalyzed by TiO2-supported Ru in the aqueous phase with a selectivity of 99.9%among gas-phase products.The concurrent regenerated hydroxide,in turn,increases the alkalinity of the aqueous solution for further CO_(2)capture,thereby enabling this one-ofits-kind continuous CO_(2)capture and methanation process.Engineering simulations demonstrate the energy feasibility of this CO_(2)DAC and methanation process,highlighting its promise for potential largescale applications.