期刊文献+
共找到129篇文章
< 1 2 7 >
每页显示 20 50 100
Electrochemical oxidation of rhodamine B by PbO_2/Sb-SnO_2/TiO_2 nanotube arrays electrode 被引量:11
1
作者 Jia Wu Kai Zhu +1 位作者 Hao Xu Wei Yan 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第6期917-927,共11页
A PbO2/Sb-SnO2/TiO2 nanotube array composite electrode was successfully synthesized and its electrochemical oxidation properties were investigated.Field-emission scanning electron microscopy(FE-SEM)and X-ray diffracti... A PbO2/Sb-SnO2/TiO2 nanotube array composite electrode was successfully synthesized and its electrochemical oxidation properties were investigated.Field-emission scanning electron microscopy(FE-SEM)and X-ray diffraction(XRD)results showed that the PbO2 coating was composed of anα-PbO2 inner layer and aβ-PbO2 outer layer.Accelerated life measurement indicated that the composite electrode had a lifetime of 815 h.Rhodamine B(RhB)was employed as a model pollutant to analyze the electrocatalytic activity of the electrode.The effects of initial RhB concentration,current density,initial pH,temperature,and chloride ion concentration on the electrochemical oxidation were investigated in detail.Inductively coupled plasma atomic emission spectroscopy(ICP-AES)results suggested that the concentration of leached Pb^2+in the electrolyte during the electrocatalytic oxidation process can be neglected.Finally,the degradation mechanism during the electrocatalytic oxidation process was proposed based on the results of solid-phase micro-extraction-gas chromatography-mass spectrometry(SPME-GC-MS).The high electrocatalytic performance of the composite electrode makes it a promising anode for the treatment of organic pollutants in aqueous solution. 展开更多
关键词 TiO2 nanotube array Electrochemical oxidation Rhodamine B Degradation mechanism
下载PDF
Enhanced Photoelectrochemical Properties of Cu_2O-loaded Short TiO_2 Nanotube Array Electrode Prepared by Sonoelectrochemical Deposition 被引量:6
2
作者 Yanbiao Liu Haibin Zhou +4 位作者 Jinhua Li Hongchong Chen Di Li Baoxue Zhou Weimin Cai 《Nano-Micro Letters》 SCIE EI CAS 2010年第4期277-284,共8页
Copper and titanium remain relatively plentiful in earth crust.Therefore,using them in solar energy conversion technologies are of significant interest.In this work,cuprous oxide(Cu2O)-modified short TiO2 nanotube a... Copper and titanium remain relatively plentiful in earth crust.Therefore,using them in solar energy conversion technologies are of significant interest.In this work,cuprous oxide(Cu2O)-modified short TiO2 nanotube array electrode was prepared based on the following two design ideas:first,the short titania nanotubes obtained from sonoelectrochemical anodization possess excellent charge separation and transportation properties as well as desirable mechanical stability;second,the sonoelectrochemical deposition technique favours the improvement in the combination between Cu2O and TiO2 nanotubes,and favours the dispersion of Cu2O particles.UV-Vis absorption and photo-electronchemical measurements proved that the Cu2O coating extended the visible spectrum absorption and the solar spectrum-induced photocurrent response.Under AM1.5 irradiation,the photocurrent density of the composite electrode(i.e.sonoelectrochemical deposition for 5 min) was more than 4.75 times as high as the pure nanotube electrode.Comparing the photoactivity of the Cu2O/TiO2 electrode obtained using sonoelectrochemical deposition with others that synthesized using plain electrochemical deposition,the photocurrent density of the former electrode was 2.2 times higher than that of the latter when biased at 1.0 V(vs.Ag/AgCl).The reproducible photocurrent response under intermittent illumination demonstrated the excellent stability of the composite electrode.Such kind of composite electrode material will have many potential applications in solar cell and other fields. 展开更多
关键词 CU2O Short TiO2 nanotube array Sonoelectrochemical deposition
下载PDF
Preparation and photoelectric effect of Zn^(2+)-TiO_2 nanotube arrays
3
作者 周艺 石德晖 +3 位作者 李宏 党铭铭 吕彩霞 黄可龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第12期2320-2325,共6页
Zn 2+-TiO2 nanotube arrays were prepared by anodic oxidation method.The current-time curves were used to investigate their growth mechanism.Scanning electron microscopy and X-ray diffractometry were applied to charact... Zn 2+-TiO2 nanotube arrays were prepared by anodic oxidation method.The current-time curves were used to investigate their growth mechanism.Scanning electron microscopy and X-ray diffractometry were applied to characterizing their structures and properties.The photoelectrochemical properties were studied by electrochemical impedance spectrum(EIS).The optimised working conditions for TiO2 nanotube arrays were found to be pH 1,0.5%HF(mass fraction),20 V oxidation voltage and for 2 h.The produced sample was in anatase form,with length of 70-100 nm,thickness of 10 nm,uniform diameter and structure that does not collapse under the preparation conditions.The EIS results show that TiO2 nanotube arrays prepared with 0.5%HF(mass fraction) present a low impedance and TiO2 nanotube arrays loaded by Zn 2+could have a decreased resistance.This decrease could likely accelerate the transfer of carriers and even increase photoelectric conversion. 展开更多
关键词 Zn2+-TiO2 nanotube array anodic oxidation method photoelectric effect growth mechanism
下载PDF
Morphology dependence of TiO_2 nanotube arrays on anodization variables and buffer medium 被引量:1
4
作者 文鑫 曹萌 +3 位作者 吴杰 陶俊超 孙艳 戴宁 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2010年第6期22-26,共5页
Vertically oriented TiO_2 nanotube arrays were prepared by potentiostatic anodization of Ti foils in HF/acetic acid(HAC) aqueous solution.Anodization variables including anodization electrolyte concentration,anodiza... Vertically oriented TiO_2 nanotube arrays were prepared by potentiostatic anodization of Ti foils in HF/acetic acid(HAC) aqueous solution.Anodization variables including anodization electrolyte concentration,anodization voltage, anodization time and buffer medium can be chosen and adjusted to manipulate the nanotube arrays to give the required length and morphology. 展开更多
关键词 TiO_2 nanotube arrays anodization
原文传递
An Energy-Efficient Electrochemical Method for CuO-TiO_2 Nanotube Array Preparation with Visible-Light Responses
5
作者 Haijin Liu Yingling Wang +4 位作者 Guoguang Liu Yuan Ren Nan Zhang Gang Wang Tong Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第1期149-155,共7页
A rapid and energy-efficient method was presented for preparing CuO-TiO2 nanotube arrays. TiO2 nanotube arrays were first prepared by anodic oxidation using titanium anode and platinum cathode. Then, the formed TiO2 n... A rapid and energy-efficient method was presented for preparing CuO-TiO2 nanotube arrays. TiO2 nanotube arrays were first prepared by anodic oxidation using titanium anode and platinum cathode. Then, the formed TiO2 nanotube arrays and Pt were used as cathode and anode, respectively, for subsequent formation of CuO-TiO2 nanotube arrays, through an electro- chemical process in a solution of 0.1 mol/L CuSO4. The morphology and composition of the CuO-TiO2 nanotube arrays were characterized using field-emission scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and UV-Vis diffusion reflection spectroscopy (UV-Vis DRS). XPS and XRD analyses suggested that the Cu element in the nanotubes existed in CuO form, and its content changed along with the voltage during the second electrochemical process. The photocatalytic activities of the CuO-TiO2 nanotube arrays were evaluated by the degradation of a model dye, rhodamine B. The results showed that Cu incorporation aroused wide visible-light adsorption and improved the photocatalytic efficiency of TiO2 nanotube arrays significantly under visible-light irradiation. The stability of the CuO-TiO2 nanotube arrays was also detected. 展开更多
关键词 CUO TiO2 nanotube array PHOTOCATALYSIS Rhodamine B
原文传递
Fabrication and photodegradation properties of TiO_2 nanotubes on porous Ti by anodization 被引量:8
6
作者 曹国剑 崔博 +3 位作者 王文奇 唐光泽 冯义成 王丽萍 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2581-2587,共7页
Both Ti foil and porous Ti were anodized in 0.5%HF and in ethylene glycol electrolyte containing 0.5%NH4F(mass fraction) separately. The results show that TiO2 nanotubes can be formed on Ti foil by both processes, whe... Both Ti foil and porous Ti were anodized in 0.5%HF and in ethylene glycol electrolyte containing 0.5%NH4F(mass fraction) separately. The results show that TiO2 nanotubes can be formed on Ti foil by both processes, whereas TiO2 nanotubes can be formed on porous Ti only in the second process. The overhigh current density led to the failure of the formation nanotubes on porous Ti in 0.5%HF electrolyte. TiO2 nanotubes were characterized by SEM and XRD. TiO2 nanotubes on porous Ti were thinner than those on Ti foil. Anatase was formed when TiO2 nanotubes were annealed at 400 °C and fully turned into rutile at 700 °C. To obtain good photodegradation, the optimal heat treatment temperature of TiO2 nanotubes was 450 °C. The porosity of the substrates influenced photodegradation properties. TiO2 nanotubes on porous Ti with 60% porosity had the best photodegradation. 展开更多
关键词 TiO_2 nanotubes anodization PHOTODEGRADATION porous Ti
下载PDF
Robust S-doped TiO_(2)@N,S-codoped carbon nanotube arrays as free-binder anodes for efficient sodium storage 被引量:3
7
作者 Guangzeng Liu Man Huang +3 位作者 Zhengchunyu Zhang Baojuan Xi Haibo Li Shenglin Xiong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期175-184,I0007,共11页
Titanium dioxide(TiO_2) has been investigated broadly as a stable,safe,and cheap anode material for sodium-ion batteries in recent years.However,the poor electronic conductivity and inherent sluggish sodium ion diffus... Titanium dioxide(TiO_2) has been investigated broadly as a stable,safe,and cheap anode material for sodium-ion batteries in recent years.However,the poor electronic conductivity and inherent sluggish sodium ion diffusion hinder its practical applications.Herein,a self-template and in situ vulcanization strategy is developed to synthesize self-supported hybrid nanotube arrays composed of nitrogen/sulfur-codoped carbon coated sulfur-doped TiO_2 nanotubes(S-TiO_2@NS-C) starting from H_2 Ti_2 O_5-H_2 O nanoarrays.The S-TiO_2@NS-C composite with one-dimensional nano-sized subunits integrates several merits.Specifically,sulfur doping strongly improves the Na~+ storage ability of TiO_2@C-N nanotubes by narrowing the bandgap of original TiO_2.Originating from the nanoarrays structures built from hollow nanotubes,carbon layer and sulfur doping,the sluggish Na~+ insertion/extraction kinetics is effectively improved and the volume variation of the electrode material is significantly alleviated.As a result,the S-TiO_2@NS-C nanoarrays present efficient sodium storage properties.The greatly improved sodium storage performances of S-TiO_2@NS-C nanoarrays confirm the importance of rational engineering and synthesis of hollow array architectures with higher complexity. 展开更多
关键词 Hollow structures nanotube arrays S-doped TiO_(2) N S-codoped carbon Sodium-ion batteries
下载PDF
Transient competition between photocatalysis and carrier recombination in TiO_2 nanotube film loaded with Au nanoparticles 被引量:1
8
作者 邵珠峰 杨延强 +1 位作者 刘树田 王强 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第9期298-305,共8页
Highly ordered TiO2 nanotube array (TNA) films are fabricated by using an anodic oxidation method. Au nanoparticles (NPs) films are decorated onto the top of TNA films with the aid of ion-sputtering and thermal an... Highly ordered TiO2 nanotube array (TNA) films are fabricated by using an anodic oxidation method. Au nanoparticles (NPs) films are decorated onto the top of TNA films with the aid of ion-sputtering and thermal annealing. An enhanced photocatalytic activity under ultraviolet C (UVC, 266 nm) light irradiation is obtained compared with that of the pristine TNA, which is shown by the steady-state photoluminescence (PL) spectra. Furthermore, a distinct blue shift in the nanosecond time-resolved transient photoluminescence (NTRT-PL) spectra is observed. Such a phenomenon could be well explained by considering the competition between the surface photocatalytic process and the recombination of the photo-generated carriers. The enhanced UV photocatalytic activities of the Au-TNA composite are evaluated through photo-degradation of methyl orange (MO) in an aqueous solution with ultraviolet-visible absorption spectrometry. Our current work may provide a simple strategy to synthesize defect-related composite photocatalytic devices. 展开更多
关键词 TiO2 nanotube array film Au nanoparticles oxygen vacancies photocatalytic activity
下载PDF
N-doped graphene quantum dot-decorated N-TiO2/P-doped porous hollow g-C_(3)N_(4) nanotube composite photocatalysts for antibiotic photodegradation and H2 production 被引量:2
9
作者 Jingshu Yuan Yao Zhang +2 位作者 Xiaoyan Zhang Junjie Zhang Shen’gen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期165-178,共14页
Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology r... Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO_(2)/P-doped porous hollow g-C_(3)N_(4) nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1% G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of0.1% G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO_(2), PCN, and N-TiO_(2)/PCN(TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO_(2) and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO_(2), PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1% G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1% G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion. 展开更多
关键词 N-doped TiO_(2) N-doped graphene quantum dots P-doped g-C_(3)N_(4) porous hollow nanotube heterojunction photocatalysis
下载PDF
Electrocatalytic production of glycolic acid via oxalic acid reduction on titania debris supported on a TiO_(2)nanotube array
10
作者 Francesco Pio Abramo Federica De Luca +4 位作者 Rosalba Passalacqua Gabriele Centi Gianfranco Giorgianni Siglinda Perathoner Salvatore Abate 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期669-678,共10页
Electrodes prepared by anodic oxidation of Ti foils are robust and not toxic materials for the electrocatalytic reduction of oxalic acid to glycolic acid, allowing the development of a renewable energy-driven process ... Electrodes prepared by anodic oxidation of Ti foils are robust and not toxic materials for the electrocatalytic reduction of oxalic acid to glycolic acid, allowing the development of a renewable energy-driven process for producing an alcoholic compound from an organic acid at low potential and room temperature. Coupled with the electrochemical synthesis of the oxalic acid from CO_(2),this process represents a new green and low-carbon path to produce added value chemicals from CO_(2). Various electrodes prepared by anodic oxidation of Ti foils were investigated. They were characterized by the presence of a TiO_(2) nanotube array together with the presence of small patches, debris, or TiO_(2) nanoparticles. The concentration of oxygen vacancies, the amount of Ti^(3+) measured by X-ray photoelectron spectroscopy(XPS) and the intensity of the anodic peak measured by cyclic voltammetry, were positively correlated with the achieved oxalic acid conversion and glycolic acid yield. The analysis of the results indicates the presence of small amorphous TiO_(2) nanoparticles(or surface patches or debris) interacting with TiO_(2) nanotubes, the sites responsible for the conversion of oxalic acid and glycolic acid yield. By varying this structural characteristic of the electrodes, it is possible to tune the glycolic acid to glyoxylic acid relative ratio. A best cumulative Faradaic efficiency(FE) of about 84% with FE to glycolic acid around 60% and oxalic conversion about 30% was observed. 展开更多
关键词 Oxalic acid TiO_(2)nanotubes Glyoxylic acid Glycolic acid ELECTROCATALYSIS
下载PDF
Phase control and stabilization of 1T-MoS_(2) via black TiO_(2-x)nanotube arrays supporting for electrocatalytic hydrogen evolution
11
作者 Ting Zhang Tingxuan Yang +3 位作者 Guoxing Qu Saifang Huang Peng Cao Wei Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期71-77,共7页
1T phase MoS_(2)(1T-MoS_(2)) is a promising substitute of platinum electrocatalyst for hydrogen evolution reaction(HER)due to its high intrinsic activity but suffering from thermodynamical instability.Although great e... 1T phase MoS_(2)(1T-MoS_(2)) is a promising substitute of platinum electrocatalyst for hydrogen evolution reaction(HER)due to its high intrinsic activity but suffering from thermodynamical instability.Although great efforts have been made to synthesize 1T-MoS_(2) and enhance its stability,it remains a big challenge to realize the phase control and stabilization of 1T-MoS_(2).Herein,based on crystal field theory analysis,we propose a new solution by designing an electrocatalyst of 1T-MoS_(2) nanosheets anchoring on black TiO2-xnanotube arrays in-situ grown on Ti plate(1T-MoS_(2)/TiO_(2-x)@Ti).The black TiO_(2-x)substrate is expected to play as electron donors to increase the charge in Mo 4 d orbits of 1T-MoS_(2) and thus weaken the asymmetric occupation of electrons in the Mo 4 d orbits.Experimental results demonstrate that black TiO_(2-x)nanotubes shift electrons to MoS_(2) and induce MoS_(2) to generate more 1 T phase due to stabilizing the 1T-MoS_(2) nanosheets compared with a Ti substrate.Thus 1T-MoS_(2/)TiO_(2-x)@Ti shows much improved HER performance with a small Tafel slope of 42 m V dec^(-1) and excellent catalytic stability with negligible degradation for 24 h.Theoretical calculations confirm that the black TiO_(2-x)substrate can effectively stabilize metastable 1T-MoS_(2) due to electrons transferring from black TiO_(2-x)to Mo 4 d orbits.This work sheds light on the instability of 1T-MoS_(2) and provides an essential method to stabilize and efficiently utilize 1T-MoS_(2) for HER. 展开更多
关键词 1T-MoS_(2) Black TiO_(2-x)nanotube Hydrogen evolution reaction Phase control ELECTROCATALYST
下载PDF
Influence of MnO_(x)deposition on TiO_(2)nanotube arrays for electrooxidation
12
作者 Kaihang Zhang Yuanzheng Zhang +6 位作者 Su Liu Xin Tong Junfeng Niu Dong Wang Junchen Yan Zhaoyang Xiong John Crittenden 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期612-618,共7页
TiO_(2)has demonstrated outstanding performance in electrochemical advanced oxidation processes(EAOPs)due to its structural stability and high oxygen overpotential.However,there is still much room for improving its el... TiO_(2)has demonstrated outstanding performance in electrochemical advanced oxidation processes(EAOPs)due to its structural stability and high oxygen overpotential.However,there is still much room for improving its electrochemical activity.Herein,narrow bandgap manganese oxide(MnO_(x))was composited with TiO_(2)nanotube arrays(TiO_(2)NTAs)that in-situ oxidized on porous Ti sponge,forming the MnO_(x)-TiO_(2)NTAs anode.XANES and XPS analysis further proved that the composition of MnO_(x)is Mn2O3.Electrochemical characterizations revealed that increasing the composited concentration of MnO_(x)can improve the conductivity and reduce oxygen evolution potential so as to improve the electrochemical activity of the composited MnO_(x)-TiO_(2)NTAs anode.Meanwhile,the optimal degradation rate of benzoic acid(BA)was achieved using MnO_(x)-TiO_(2)NTAs with a MnO_(x)concentration of 0.1 mmol L^(-1),and the role of MnO_(x)was proposed based on DFT calculation.Additionally,the required electrical energy(EE/O)to destroy BA was optimized by varying the composited concentration of MnO_(x)and the degradation voltage.These quantitative results are of great significance for the design and application of high-performance materials for EAOPs. 展开更多
关键词 TiO_(2)nanotube arrays Oxidation mechanism Energy efficiency assessment MnO_(x)band structure Electrochemical advanced oxidation processes
下载PDF
Degradation of Rhodamine B in the photocatalytic reactor containing TiO_(2)nanotube arrays coupled with nanobubbles
13
作者 Zesen Lin Changchang Dong +1 位作者 Wei Mu Xiaojun Han 《Advanced Sensor and Energy Materials》 2023年第2期1-7,共7页
Although photocatalytic technology is applied in water treatment,the challenge still exists due to its low photocatalytic performance.Herein,a photocatalytic reactor coupled with nanobubbles(NBs)is developed to degrad... Although photocatalytic technology is applied in water treatment,the challenge still exists due to its low photocatalytic performance.Herein,a photocatalytic reactor coupled with nanobubbles(NBs)is developed to degrade organic pollutants in wastewater.The reactor contains Ti mesh coated with TiO_(2)nanotube arrays as a photocatalyst.The introduction of NBs in the reactor increases the dissolved oxygen content to enhance photocatalytic performance.The photocatalytic reactor exhibits outstanding photocatalytic performance,and the degradation ability of Rhodamine B is 95.39%after 2 h of irradiation treatment.The reactor also shows excellent photodegradation performance for other organic pollutants,such as methylene blue(74.23%),tetracycline(68.68%),and oxytetracycline hydrochloride(64.10%).Radical trapping experiments further prove that·O_(2)−,h^(+)and·OH are the active species for the degradation of RhB in the photocatalytic system.Therefore,this work provides a feasible strategy to design a photocatalytic reactor coupling with nanobubbles technology for the photodegradation of organic pollutants in wastewater. 展开更多
关键词 TiO_(2)nanotube arrays Photocatalytic reactor NANOBUBBLES Organic pollutants
下载PDF
Morphology Control of TiO_(2)Nanotubes towards High-Efficient Electrodes for Supercapacitor
14
作者 WANG Jin CHEN Guangbing +1 位作者 WANG Chunrui LI Hui 《Journal of Donghua University(English Edition)》 CAS 2024年第4期377-387,共11页
This article studies the role of electrochemical parameters in controlling the morphology of oxidized TiO_(2)nanotubes and the electrochemical performance of modified TiO_(2)nanotubes.Humidity is a key factor for fabr... This article studies the role of electrochemical parameters in controlling the morphology of oxidized TiO_(2)nanotubes and the electrochemical performance of modified TiO_(2)nanotubes.Humidity is a key factor for fabricating TiO_(2)nanotubes.When the relative humidity belows 70%,the TiO_(2)nanotubes can be successfully prepared.What's more,by changing the anodization voltage and time,the diameter and the length of TiO_(2)nanotubes can be adjusted.In addition,the TiO_(2)nanotubes are modified through electrochemical self-doping and loading Pt metal particles on the surface of the nanotubes,which promotes the performance of the supercapacitor.The sample anodized at 100 V for 3 h has a specific capacity of up to 2.576 mF/cm~2 at a scan rate of 100 mV/s after self-doping,and its capacity retention rate still remains at 89.55%after 5000 cycles,demonstrating excellent cycling stability.The Pt-modified sample has a specific capacity of up to 3.486 mF/cm~2 at the same scan rate,exhibiting more outstanding electrochemical performance. 展开更多
关键词 TiO_(2)nanotube anodization CONDUCTIVITY SUPERCAPACITOR
下载PDF
纳米TiO_2的电化学嵌锂研究 被引量:7
15
作者 兰英 刘建文 +4 位作者 高学平 周杏第 曲金秋 吴锋 宋德瑛 《电化学》 CAS CSCD 2004年第2期133-136,共4页
 应用苛性钠水热法制备粒度均匀、分散性好、质子钛酸盐纳米管(直径约10~15nm).经加热烧结脱水后,该纳米管逐渐转变成具有锐钛矿相结构的纳米柱(直径约15~20nm).初步研究表明,这种具有锐钛矿相结构的纳米柱,其电化学可逆嵌/脱锂容量...  应用苛性钠水热法制备粒度均匀、分散性好、质子钛酸盐纳米管(直径约10~15nm).经加热烧结脱水后,该纳米管逐渐转变成具有锐钛矿相结构的纳米柱(直径约15~20nm).初步研究表明,这种具有锐钛矿相结构的纳米柱,其电化学可逆嵌/脱锂容量较高,但循环稳定性还有待改进提高. 展开更多
关键词 纳米柱 二氧化钛 电化学嵌锂性能 锐钛矿相结构 锂离子电池 纳米管
下载PDF
Interwoven scaffolded porous titanium oxide nanocubes/carbon nanotubes framework for high-performance sodium-ion battery 被引量:2
16
作者 Wen-Bei Yu Wen-Da Dong +10 位作者 Chao-Fan Li Nasiruddin Macadam Jiu-Xiang Yang Guo-Bin Zhang Zhi-Yi Hu Tien-Chun Wu Yu Li Tawfique Hasan Li-Hua Chen Li-Qiang Mai Bao-Lian Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期38-46,I0002,共10页
Supercapacitor-like Na-ion batteries have attracted much attention due to the high energy density of batteries and power density of capacitors.Titanium dioxide(TiO_(2)),is a promising anode material.Its performance is... Supercapacitor-like Na-ion batteries have attracted much attention due to the high energy density of batteries and power density of capacitors.Titanium dioxide(TiO_(2)),is a promising anode material.Its performance is however seriously hindered by its low electrical conductivity and the sluggish diffusion of sodium ions(Na^(+))in the TiO_(2)matrix.Herein,this work combines porous TiO_(2)nanocubes with carbon nanotubes(CNTs)to enhance the electrical conductivity and accelerate Na^(+)diffusivity for Na-ion batteries(NIBs).In this composite,an interwoven scaffolded TiO_(2)/CNTs framework is formed to provide abundant channels and shorter diffusion pathways for electrons and ions.The in-situ X-ray diffraction and cyclic voltammetry confirm the low strain and superior transport kinetics in Na^(+)intercalation/extraction processes.In addition,the chemically bonded TiO_(2)/CNTs hybrid provides a more feasible channel for Na^(+)insertion/extraction with a much lower energy barrier.Consequently,the TiO_(2)/CNTs composite exhibits excellent electrochemical performance with a capacity of 223.4 m Ah g^(-1)at 1 C and a capacity of 142.8 m Ah g^(-1)at 10 C(3.35 A g^(-1)).The work here reveals that the combination of active materials with CNTs can largely improve the utilization efficiency and enhance their sodium storage. 展开更多
关键词 Supercapacitor-like Interwoven scaffold Na-ion battery TiO_(2) Carbon nanotubes
下载PDF
Elastic properties of anatase titanium dioxide nanotubes:A molecular dynamics study
17
作者 Kang Yang Liang Yang +2 位作者 Chang-Zhi Ai Zhao Wang Shi-Wei Lin 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第10期292-299,共8页
The elastic properties of anatase nanotubes are investigated by molecular dynamics(MD) simulations. Young's modulus, Poisson ratio, and shear modulus are calculated by transversely isotropic structure model. The c... The elastic properties of anatase nanotubes are investigated by molecular dynamics(MD) simulations. Young's modulus, Poisson ratio, and shear modulus are calculated by transversely isotropic structure model. The calculated elastic constants of bulk rutile, anatase, and Young's modulus of nanotube are in good agreement with experimental values, respectively, demonstrating that the Matsui and Akaogi(MA) potential function used in the simulation can accurately present the elastic properties of anatase titanium dioxide nanotubes. For single wall anatase titanium dioxide nanotube, the elastic moduli are shown to be sensitive to structural details such as the chirality and radius. For different chirality nanotubes with the same radius, the elastic constants are not proportional to the chiral angle. The elastic properties of the nanotubes with the chiral angle of 0° are worse than those of other chiral nanotubes. For nanotubes with the same chirality but different radii, the elastic constant, Young's modulus, and shear modulus decrease as the radius increases. But there exist maximal values in a radius range of 10 nm-15 nm. Such information can not only provide a deep understanding of the influence of geometrical structure on nanotubes mechanical properties, but also present important guidance to optimize the composite behavior by using nanotubes as the addition. 展开更多
关键词 molecular dynamics ELASTIC properties TiO_2 nanotube CHIRAL angle RADIUS
下载PDF
Pt/TiO_(2) Nanosheets Array Dominated by {001} Facets with Enhanced Photocatalytic Activity
18
作者 Feng Li Zheng-ping Fu Ya-lin Lu 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第5期530-534,I0003,共6页
{001}facets dominated single crystalline anatase TiO_(2) nanosheet array(TNSA)was synthe-sized through an optimized organic solvothermal route on uorine-doped tin oxide substrate.The field emission scanning electron m... {001}facets dominated single crystalline anatase TiO_(2) nanosheet array(TNSA)was synthe-sized through an optimized organic solvothermal route on uorine-doped tin oxide substrate.The field emission scanning electron microscopy images and X-ray diffraction patterns re-vealed that the{001}synthesized facets dominated TNSA exhibited much higher orientation than that synthesized by hydrothermal route.The TNSAs were loaded with Pt nanoparti-cles in uniformly size by using a photodecomposition method,which were further con rmed by high resolution transmission electron microscopy(HRTEM).The HRTEM images also revealed that Pt nanoparticles preferred to deposit on{001}facets.With loading of Pt nanoparticles,the optical absorbance was significantly enhanced,while the photolumines-cence(PL)was inhibited.The photocatalytic activity of TNSA was signi cantly improved by Pt loading and reached the maximum with optimal amount of Pt loading.The optimal amount of Pt on{001}facets is far less than that on TiO_(2) nanoparticles,which may be attributed to the specific atom structure of reactive{001}facets. 展开更多
关键词 Organic solvothermal route PHOTODECOMPOSITION TiO_(2) Nanosheet array {001}facet
下载PDF
Lithiophilic seeds and rigid arrays synergistic induced dendrite-free and stable Li anode towards long-life lithium-oxygen batteries
19
作者 Yue Li Haichang Zhang +5 位作者 Rui Zhang Junwei Sha Liying Ma Dongdong Zhao Chunsheng Shi Naiqin Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期268-276,I0006,共10页
High energy density lithium-oxygen battery(LOB) is currently regraded as a promising candidate for next-generation power system.However,the dendrite and instability issues of Li metal anode lead to its poor cyclic sta... High energy density lithium-oxygen battery(LOB) is currently regraded as a promising candidate for next-generation power system.However,the dendrite and instability issues of Li metal anode lead to its poor cyclic stability and low energy density.In this work,lithiophilic Al_(2) O_(3) seeds induced rigid carbon nanotube arrays(CNTA)/three-dimensional graphene(3 DG) is developed as a host material for Li anode,namely Al_(2) O_(3)-CNTA/3 DG.It is demonstrated that the lithiophilic feature of Al_(2) O_(3) seeds and the enhanced rigidity of arrays can synergistically induce the uniform Li flux,inhibit the collapse of arrays,and stabilize electrolyte/electrode interfaces.As a result,the Al_(2) O_(3)-CNTA/3 DG-Li anode delivers a high Coulombic efficiency above 97% after 140 cycles(8 mAh cm^(-2) at 4 mA cm^(-2)).With this anode and the breathable CNTA/3 DG cathode,the full LOB exhibits a significantly increased life-span up to 160 cycles(500 mAh g^(-1) at 100 mA g^(-1)),which is almost 3 times longer than that with pure Li foil as the anodes.This work demonstrates a new approach to highly reversibly long-cycling performance of LOBs towards practical application. 展开更多
关键词 Caron nanotube array Al_(2)O_(3) Li-O_(2)battery Li metal ANODE
下载PDF
BPQDs@TNTs药物载体的构建及其缓释性能研究
20
作者 陈冬冬 郑竑 《福建医药杂志》 CAS 2024年第1期21-24,共4页
目的在骨科钛板表面构建能负载阿仑膦酸钠及硫酸庆大霉素的双载药复合药物载体。方法通过阳极氧化法在TiO_(2)表面制备纳米管阵列(TNTs),动态吸附阿伦磷酸钠后再填充载有硫酸庆大霉素的载药黑磷量子点(BPQDs),管口采用肉豆蔻醇进行封装... 目的在骨科钛板表面构建能负载阿仑膦酸钠及硫酸庆大霉素的双载药复合药物载体。方法通过阳极氧化法在TiO_(2)表面制备纳米管阵列(TNTs),动态吸附阿伦磷酸钠后再填充载有硫酸庆大霉素的载药黑磷量子点(BPQDs),管口采用肉豆蔻醇进行封装,并利用X射线衍射、透射电镜进行表征,最后通过液相色谱法测定其上负载的阿仑膦酸钠及硫酸庆大霉素的缓释速率。结果X射线衍射表明构建的BPQDs@TNTs药物载体具备BP和TNTs的特征衍射峰,透射电镜扫描表明,肉豆蔻醇成功地对TNTs进行了封口,TiO_(2)纳米管中的阿仑膦酸钠及BPQDs载体的硫酸庆大霉素在72 h内已基本释放完毕,BPQDs@TNTs药物载体上阿仑膦酸钠及硫酸庆大霉素则在96 h内才基本释放完毕。结论BPQDs@TNTs药物载体能成功搭载阿仑膦酸钠及硫酸庆大霉素,且在体液中具有更好的缓释效能。 展开更多
关键词 TiO_(2)纳米管阵列 黑磷量子点 阿仑磷酸钠 硫酸庆大霉素
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部