Microstructures of Ti2AlN/TiAl composites prepared by in-situ method were characterized in in-situ and aging treatment conditions and the nitride precipitation was investigated in Ti2AlN/TiAl composites aged at 900 ℃...Microstructures of Ti2AlN/TiAl composites prepared by in-situ method were characterized in in-situ and aging treatment conditions and the nitride precipitation was investigated in Ti2AlN/TiAl composites aged at 900 ℃ for 24 h after being heat treated at 1400 ℃ for 0.5 h. The in-situ composites consist of γ+α2 lamellar colonies, equiaxed y grains and Ti2AlN reinforcements. Matrix with nearly fully lamellar structure formed after solution and subsequently aging treatment. With the increase of Ti2AlN content, the nearly fully lamellar structure becomes instable for the aged composites. According to TEM study, fine Ti2AlN precipitates are found to distribute at the grain boundaries of lamellar colony. Needle-like Ti3AlN precipitates arrange in line with growing axis parallel to [001] direction of the γ-TiAl matrix and another needle-like Ti3AlN precipitates with lager size distribute at the dislocations. Key words:展开更多
Ti_(2)AlC/TiAl composites with different volume fractions were prepared by hot pressing technology,and their reinforced structural characteristics and mechanical properties were evaluated.The results showed that when ...Ti_(2)AlC/TiAl composites with different volume fractions were prepared by hot pressing technology,and their reinforced structural characteristics and mechanical properties were evaluated.The results showed that when the reinforced phase volume fraction of Ti_(2)AlC was 20%,three-dimensional interpenetrating network structures were formed in the composites.Above 20%,Ti_(2)AlC phase in the composites accumulated and grew to form thick skeletal networks.The microplastic deformation behavior of Ti_(2)AlC phase,such as kink band and delamination,improved the fracture toughness of the composites.Comparative analysis indicated that the uniform and small interconnecting network structures could further reinforce the composites.The bending strengths of composites prepared with 20 vol.%Ti_(2)AlC reached(900.9±45.0)MPa,which was 25.5% higher than that of TiAl matrix.In general,the co-continuous Ti_(2)AlC/TiAl composite with excellent mechanical properties can be prepared by powder metallurgy method.展开更多
Magnesium composites reinforced by N-deficient Ti_(2)AlN MAX phase were first fabricated by non-pressure infiltration of Mg into three-dimensional(3D)co-continuous porous Ti_(2)AlN_(x)(x=0.9,1.0)preforms.The relations...Magnesium composites reinforced by N-deficient Ti_(2)AlN MAX phase were first fabricated by non-pressure infiltration of Mg into three-dimensional(3D)co-continuous porous Ti_(2)AlN_(x)(x=0.9,1.0)preforms.The relationship between their mechanical properties and micro-structure is discussed with the assessment of 2D and 3D characterization.X-ray diffraction(XRD)and scanning electron microscopy detected no impurities.The 3D reconstruction shows that the uniformly distributed pores in Ti_(2)AlN_(x) preforms are interconnected,which act as infiltra-tion tunnels for the melt Mg.The compressive yield strength and microhardness of Ti_(2)AlN_(0.9)/Mg are 353 MPa and 1.12 GPa,respectively,which are 8.55%and 6.67%lower than those of Ti_(2)AlN/Mg,respectively.The typical delamination and kink band occurred in Ti_(2)AlN_(x) under compressive and Vickers hardness(V_(H))tests.Owing to the continuous skeleton structure and strong interfacial bonding strength,the crack ini-tiated in Ti_(2)AlN_(x) was blocked by the plastic Mg matrix.This suggests the possibility of regulating the mechanical performance of Ti_(2)AlN/Mg composites by controlling the N vacancy and the hierarchical structure of Ti_(2)AlN skeleton.展开更多
Microstructure stability of in situ synthesized Ti2AlN/Ti-48Al-2Cr-2Nb composite during aging at 900 ℃ was investigated by XRD, OM and TEM, and the unreinforced Ti-48Al-2Cr-2Nb alloy was also examined for comparison....Microstructure stability of in situ synthesized Ti2AlN/Ti-48Al-2Cr-2Nb composite during aging at 900 ℃ was investigated by XRD, OM and TEM, and the unreinforced Ti-48Al-2Cr-2Nb alloy was also examined for comparison. The result showed that in the TiAl alloy,α2 lamellae thinned and were broken down, and became discontinuous with increasing aging time. The decomposition ofα2 lamella toγ which was characterized by parallel decomposition and breakdown ofα2 lamellae led to the degradation of the lamellar structure. While in the composite, lamellar structure remained relatively stable even after aging at 900 ℃ for 100 h. No breakdown ofα2 lamellae except parallel decomposition and precipitation of fine nitride particles was observed. The better microstructural stability of the composite was mainly attributed to the precipitation of Ti2AlN particles at theα2/γ interface which played an important role in retarding the coarsening of lamellar microstructure in the matrix of composite.展开更多
Improving the plasticity of TiAl alloys at room temperature has been a longstanding challenge for the de-velopment of next-generation aerospace engines.By adopting the nacre-like architecture design strategy,we have o...Improving the plasticity of TiAl alloys at room temperature has been a longstanding challenge for the de-velopment of next-generation aerospace engines.By adopting the nacre-like architecture design strategy,we have obtained a novel heterogeneous lamellar Ti_(2)AlC/TiAl composite with superior strength-plasticity synergy,i.e.,compressive strength of∼2065 MPa and fracture strain of∼27%.A combination of micropil-lar compression and large-scale atomistic simulation has revealed that the superior strength-plasticity synergy is attributed to the collaboration of Ti_(2)AlC reinforcement,lamellar architecture and heteroge-neous interface.More specifically,multiple deformation modes in Ti_(2)AlC,i.e.,basal-plane dislocations,atomic-scale ripples and kink bands,could be activated during the compression,thus promoting the plas-tic deformation capability of composite.Meanwhile,the lamellar architecture could not only induce sig-nificant stress redistribution and crack deflection between Ti_(2)AlC and TiAl,but also generate high-density SFs and DTs interactions in TiAl,leading to an improved strength and strain hardening ability.In addi-tion,profuse unique Ti_(2)AlC(1¯10¯3)/TiAl(111)interfaces in the composite could dramatically contribute to the strength and plasticity due to the interface-mediated dislocation nucleation and obstruction mecha-nisms.These findings offer a promising paradigm for tailoring microstructure of TiAl matrix composites with extraordinary strength and plasticity at ambient temperature.展开更多
The Ti_(2)AlN-reinforced TiAl(WMS)composites with different contents of Ti_(2)AlN were prepared by an in situ method of reactive arc-melting technique.According to the results of X-ray diffraction(XRD)analysis,the Ti_...The Ti_(2)AlN-reinforced TiAl(WMS)composites with different contents of Ti_(2)AlN were prepared by an in situ method of reactive arc-melting technique.According to the results of X-ray diffraction(XRD)analysis,the Ti_(2)AlNreinforced WMS composites consist ofγ-TiAl,α_(2)-Ti_(3)Al,and Ti_(2)AlN phases.Microstructure analysis results indicate that Ti_(2)AlN reinforcements with rod-like in shape form in the WMS matrix with aα_(2)/γlamellar structure containing some bulk y phases.With volume fraction of Ti_(2)AlN increasing,the grain size of the composites decreases significantly and the elasticity modulus(E)increases.The compressive strength and compressive fracture strain of the composite with 3 vol%Ti_(2)AlN have a maximum value of 1,654 MPa and 22.5%,respectively,which are approximately improved by 45.84%and 29.31%,respectively,compared with that of the unreinforced WMS alloy.展开更多
In order to improve the intrinsic brittleness of TiAl alloys,Ti_(2)AlNb alloys with outstanding ductility and toughness at room temperature,and good high-temperature performance are competitive candidates in construct...In order to improve the intrinsic brittleness of TiAl alloys,Ti_(2)AlNb alloys with outstanding ductility and toughness at room temperature,and good high-temperature performance are competitive candidates in constructing the TiAl-based laminated composites.In this work,TiAl/Ti_(2)AlNb laminated composites are successfully synthesized by vacuum hot pressing combined with the foil-foil(sheet)metallurgy.Under the pressure of 65 MPa,different holding time and temperature of hot pressing are tried and the optimized fabrication parameter is acquired as 1050℃/120 min/65 MPa.Along with the changes of processing parameters,the defect,microstructure,interface,phase transformation and the corresponding mechanical properties are detailly discussed.The results show that the TiAl/Ti_(2)AlNb laminated composite fabricated at 1050℃ for 2 h achieves a good metallurgical interface bonding.The corresponding interface microstructure is composed of region I and region II.The region I consists of O,α_(2)and B2/βphase,and region II is made up ofα2.Subsequently,the tensile tests indicate that the composite synthesized at 1050℃ for 2 h possesses a maximum strength of 812 MPa and a total elongation of 1.31%at room temperature,and a strength of 539.71 MPa and the highest total elongation of 10.34%at 750℃.The well synergistic deformation ability between the interface and the two base alloys endows the composite an excellent tensile performance.Moreover,the composite processed at 1050℃ for 2 h behaves the best fracture toughness in both arrester orientation and divider orientation with the value of 32.6 MPa.m^(1/2)and 30.1 MPa.m^(1/2),respectively.The Ti_(2)AlNb alloy in the laminated structure effectively release the stress around the crack tip and plays a role in toughening.Further,crack deflection,crack bridging,crack blunting and fragmentation also make contributions to enhance the fracture toughness of the laminated composites.展开更多
基金Project(2011CB605502)supported by the National Basic Research Program of ChinaProject(51001086)supported by the National Natural Science Foundation of China
文摘Microstructures of Ti2AlN/TiAl composites prepared by in-situ method were characterized in in-situ and aging treatment conditions and the nitride precipitation was investigated in Ti2AlN/TiAl composites aged at 900 ℃ for 24 h after being heat treated at 1400 ℃ for 0.5 h. The in-situ composites consist of γ+α2 lamellar colonies, equiaxed y grains and Ti2AlN reinforcements. Matrix with nearly fully lamellar structure formed after solution and subsequently aging treatment. With the increase of Ti2AlN content, the nearly fully lamellar structure becomes instable for the aged composites. According to TEM study, fine Ti2AlN precipitates are found to distribute at the grain boundaries of lamellar colony. Needle-like Ti3AlN precipitates arrange in line with growing axis parallel to [001] direction of the γ-TiAl matrix and another needle-like Ti3AlN precipitates with lager size distribute at the dislocations. Key words:
基金the Cultivation Project for Original Scientific Research Instruments and Equipments of Southwest Jiaotong University,China(No.XJ2021KJZK041)the Key Laboratory of Infrared Imaging Materials and Detectors,Shanghai Institute of Technical Physics,Chinese Academy of Sciences(No.IIMDKFJJ-19-08)the China Postdoctoral Science Foundation(No.2018T110993)。
基金the financial supports from the National Natural Science Foundation of China(No.52065009)the Joint Funds of the Science and Technology Foundation of Guizhou Province,China(No.20157219)the Science and Technology Planning Project of Guizhou Province,China(No.20191069).
文摘Ti_(2)AlC/TiAl composites with different volume fractions were prepared by hot pressing technology,and their reinforced structural characteristics and mechanical properties were evaluated.The results showed that when the reinforced phase volume fraction of Ti_(2)AlC was 20%,three-dimensional interpenetrating network structures were formed in the composites.Above 20%,Ti_(2)AlC phase in the composites accumulated and grew to form thick skeletal networks.The microplastic deformation behavior of Ti_(2)AlC phase,such as kink band and delamination,improved the fracture toughness of the composites.Comparative analysis indicated that the uniform and small interconnecting network structures could further reinforce the composites.The bending strengths of composites prepared with 20 vol.%Ti_(2)AlC reached(900.9±45.0)MPa,which was 25.5% higher than that of TiAl matrix.In general,the co-continuous Ti_(2)AlC/TiAl composite with excellent mechanical properties can be prepared by powder metallurgy method.
基金financially supported by the National Natural Science Foundation of China(No.52175284)the State Key Lab of Advanced Metals and Materials(No.2021-ZD08)the Beijing Government Funds for the Cons tructive Project of Central Universities(No.353139535)。
文摘Magnesium composites reinforced by N-deficient Ti_(2)AlN MAX phase were first fabricated by non-pressure infiltration of Mg into three-dimensional(3D)co-continuous porous Ti_(2)AlN_(x)(x=0.9,1.0)preforms.The relationship between their mechanical properties and micro-structure is discussed with the assessment of 2D and 3D characterization.X-ray diffraction(XRD)and scanning electron microscopy detected no impurities.The 3D reconstruction shows that the uniformly distributed pores in Ti_(2)AlN_(x) preforms are interconnected,which act as infiltra-tion tunnels for the melt Mg.The compressive yield strength and microhardness of Ti_(2)AlN_(0.9)/Mg are 353 MPa and 1.12 GPa,respectively,which are 8.55%and 6.67%lower than those of Ti_(2)AlN/Mg,respectively.The typical delamination and kink band occurred in Ti_(2)AlN_(x) under compressive and Vickers hardness(V_(H))tests.Owing to the continuous skeleton structure and strong interfacial bonding strength,the crack ini-tiated in Ti_(2)AlN_(x) was blocked by the plastic Mg matrix.This suggests the possibility of regulating the mechanical performance of Ti_(2)AlN/Mg composites by controlling the N vacancy and the hierarchical structure of Ti_(2)AlN skeleton.
基金Project(2011CB605502)supported by the National Basic Research Program of ChinaProject(B08040)supported by Introducing Talents of Discipline to Universities,China
文摘Microstructure stability of in situ synthesized Ti2AlN/Ti-48Al-2Cr-2Nb composite during aging at 900 ℃ was investigated by XRD, OM and TEM, and the unreinforced Ti-48Al-2Cr-2Nb alloy was also examined for comparison. The result showed that in the TiAl alloy,α2 lamellae thinned and were broken down, and became discontinuous with increasing aging time. The decomposition ofα2 lamella toγ which was characterized by parallel decomposition and breakdown ofα2 lamellae led to the degradation of the lamellar structure. While in the composite, lamellar structure remained relatively stable even after aging at 900 ℃ for 100 h. No breakdown ofα2 lamellae except parallel decomposition and precipitation of fine nitride particles was observed. The better microstructural stability of the composite was mainly attributed to the precipitation of Ti2AlN particles at theα2/γ interface which played an important role in retarding the coarsening of lamellar microstructure in the matrix of composite.
基金the National Natural Science Foundation of China(Grant No.52101174)the State Key Lab of Advanced Metals and Materials(No.2022-Z15).
文摘Improving the plasticity of TiAl alloys at room temperature has been a longstanding challenge for the de-velopment of next-generation aerospace engines.By adopting the nacre-like architecture design strategy,we have obtained a novel heterogeneous lamellar Ti_(2)AlC/TiAl composite with superior strength-plasticity synergy,i.e.,compressive strength of∼2065 MPa and fracture strain of∼27%.A combination of micropil-lar compression and large-scale atomistic simulation has revealed that the superior strength-plasticity synergy is attributed to the collaboration of Ti_(2)AlC reinforcement,lamellar architecture and heteroge-neous interface.More specifically,multiple deformation modes in Ti_(2)AlC,i.e.,basal-plane dislocations,atomic-scale ripples and kink bands,could be activated during the compression,thus promoting the plas-tic deformation capability of composite.Meanwhile,the lamellar architecture could not only induce sig-nificant stress redistribution and crack deflection between Ti_(2)AlC and TiAl,but also generate high-density SFs and DTs interactions in TiAl,leading to an improved strength and strain hardening ability.In addi-tion,profuse unique Ti_(2)AlC(1¯10¯3)/TiAl(111)interfaces in the composite could dramatically contribute to the strength and plasticity due to the interface-mediated dislocation nucleation and obstruction mecha-nisms.These findings offer a promising paradigm for tailoring microstructure of TiAl matrix composites with extraordinary strength and plasticity at ambient temperature.
基金financially supported by the National Basic Research Program of China(No.2011CB605503)the Program of Introducing Talents of Discipline to Universities(No.B08040)。
文摘The Ti_(2)AlN-reinforced TiAl(WMS)composites with different contents of Ti_(2)AlN were prepared by an in situ method of reactive arc-melting technique.According to the results of X-ray diffraction(XRD)analysis,the Ti_(2)AlNreinforced WMS composites consist ofγ-TiAl,α_(2)-Ti_(3)Al,and Ti_(2)AlN phases.Microstructure analysis results indicate that Ti_(2)AlN reinforcements with rod-like in shape form in the WMS matrix with aα_(2)/γlamellar structure containing some bulk y phases.With volume fraction of Ti_(2)AlN increasing,the grain size of the composites decreases significantly and the elasticity modulus(E)increases.The compressive strength and compressive fracture strain of the composite with 3 vol%Ti_(2)AlN have a maximum value of 1,654 MPa and 22.5%,respectively,which are approximately improved by 45.84%and 29.31%,respectively,compared with that of the unreinforced WMS alloy.
基金supported by Major Special Science and Technology Project of Yunnan Province 202002AB080001-3the National Natural Science Foundation of China(no.51704088)Fundamental Research and Development Program of China(Grant no.JCKY2017205B032)。
文摘In order to improve the intrinsic brittleness of TiAl alloys,Ti_(2)AlNb alloys with outstanding ductility and toughness at room temperature,and good high-temperature performance are competitive candidates in constructing the TiAl-based laminated composites.In this work,TiAl/Ti_(2)AlNb laminated composites are successfully synthesized by vacuum hot pressing combined with the foil-foil(sheet)metallurgy.Under the pressure of 65 MPa,different holding time and temperature of hot pressing are tried and the optimized fabrication parameter is acquired as 1050℃/120 min/65 MPa.Along with the changes of processing parameters,the defect,microstructure,interface,phase transformation and the corresponding mechanical properties are detailly discussed.The results show that the TiAl/Ti_(2)AlNb laminated composite fabricated at 1050℃ for 2 h achieves a good metallurgical interface bonding.The corresponding interface microstructure is composed of region I and region II.The region I consists of O,α_(2)and B2/βphase,and region II is made up ofα2.Subsequently,the tensile tests indicate that the composite synthesized at 1050℃ for 2 h possesses a maximum strength of 812 MPa and a total elongation of 1.31%at room temperature,and a strength of 539.71 MPa and the highest total elongation of 10.34%at 750℃.The well synergistic deformation ability between the interface and the two base alloys endows the composite an excellent tensile performance.Moreover,the composite processed at 1050℃ for 2 h behaves the best fracture toughness in both arrester orientation and divider orientation with the value of 32.6 MPa.m^(1/2)and 30.1 MPa.m^(1/2),respectively.The Ti_(2)AlNb alloy in the laminated structure effectively release the stress around the crack tip and plays a role in toughening.Further,crack deflection,crack bridging,crack blunting and fragmentation also make contributions to enhance the fracture toughness of the laminated composites.