期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Strategic design and fabrication of MXenes-Ti_(3)CNCl_(2)@CoS_(2) core-shell nanostructure for high-efficiency hydrogen evolution 被引量:4
1
作者 Jizhou Jiang Saishuai Bai +7 位作者 Meiqing Yang Jing Zou Neng Li Jiahe Peng Haitao Wang Kun Xiang Song Liu Tianyou Zhai 《Nano Research》 SCIE EI CSCD 2022年第7期5977-5986,共10页
CoS_(2) is considered to be a promising electrocatalyst for hydrogen evolution reaction(HER).However,its further widespread applications are hampered by the unsatisfactory activity due to relatively high chemisorption... CoS_(2) is considered to be a promising electrocatalyst for hydrogen evolution reaction(HER).However,its further widespread applications are hampered by the unsatisfactory activity due to relatively high chemisorption energy for hydrogen atom.Herein,theoretical predictions of first-principles calculations reveal that the introduction of a Cl-terminated MXenes-Ti_(3)CNCl_(2) can significantly reduce the HER potential of CoS_(2)-based materials and the Ti_(3)CNCl_(2)@CoS_(2) core–shell nanostructure has Gibbs free energy of hydrogen adsorption(|ΔGH|)close to zero,much lower than that of the pristine CoS_(2) and Ti_(3)CNCl_(2).Inspired by the theoretical predictions,we have successfully fabricated a unique Ti_(3)CNCl_(2)@CoS_(2) core–shell nanostructure by ingeniously coupling CoS_(2) with a Cl-terminated MXenes-Ti_(3)CNCl_(2).Interface-charge transfer between CoS_(2) and Ti_(3)CNCl_(2) results in a higher degree of electronic localization and a formation of chemical bonding.Thus,the Ti_(3)CNCl_(2)@CoS_(2) core–shell nanostructure achieves a significant enhancement in HER activity compared to pristine CoS_(2) and Ti_(3)CNCl_(2).Theoretical calculations further confirm that the partial density of states of CoS_(2) after hybridization becomes more non-localized,and easier to interact with hydrogen ions,thus boosting HER performance.In this work,the success of oriented experimental fabrication of high-efficiency Ti_(3)CNCl_(2)@CoS_(2) electrocatalysts guided by theoretical predictions provides a powerful lead for the further strategic design and fabrication of efficient HER electrocatalysts. 展开更多
关键词 theoretical predictions ti_(3)cncl_(2)@cos_(2)core-shell nanostructure electronic non-localization hydrogen evolution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部