Two-dimension(2D)van der Waals heterojunction holds essential promise in achieving high-performance flexible near-infrared(NIR)photodetector.Here,we report the successful fabrication of ZnSb/Ti_(3)C_(2)T_(x)MXene base...Two-dimension(2D)van der Waals heterojunction holds essential promise in achieving high-performance flexible near-infrared(NIR)photodetector.Here,we report the successful fabrication of ZnSb/Ti_(3)C_(2)T_(x)MXene based flexible NIR photodetector array via a facile photolithography technology.The single ZnSb/Ti_(3)C_(2)T_(x)photodetector exhibited a high light-to-dark current ratio of 4.98,fast response/recovery time(2.5/1.3 s)and excellent stability due to the tight connection between 2D ZnSb nanoplates and 2D Ti_(3)C_(2)T_(x)MXene nanoflakes,and the formed 2D van der Waals heterojunction.Thin polyethylene terephthalate(PET)substrate enables the ZnSb/Ti_(3)C_(2)T_(x)photodetector withstand bending such that stable photoelectrical properties with non-obvious change were maintained over 5000 bending cycles.Moreover,the ZnSb/Ti_(3)C_(2)T_(x)photodetectors were integrated into a 26×5 device array,realizing a NIR image sensing application.展开更多
Thermally chargeable supercapacitors can collect low-grade heat generated by the human body and convert it into electricity as a power supply unit for wearable electronics.However,the low Seebeck coefficient and heat-...Thermally chargeable supercapacitors can collect low-grade heat generated by the human body and convert it into electricity as a power supply unit for wearable electronics.However,the low Seebeck coefficient and heat-to-electricity conversion efficiency hinder further application.In this paper,we designed a high-performance thermally chargeable supercapacitor device composed of ZnMn_(2)O_(4)@Ti_(3)C_(2)T_(x)MXene composites(ZMO@Ti_(3)C_(2)T_(x)MXene)electrode and UIO-66 metal–organic framework doped multichannel polyvinylidene fluoridehexafluoro-propylene ionogel electrolyte,which realized the thermoelectric conversion and electrical energy storage at the same time.This thermally chargeable supercapacitor device exhibited a high Seebeck coefficient of 55.4 mV K^(−1),thermal voltage of 243 mV,and outstanding heat-to-electricity conversion efficiency of up to 6.48%at the temperature difference of 4.4 K.In addition,this device showed excellent charge–discharge cycling stability at high-temperature differences(3 K)and low-temperature differences(1 K),respectively.Connecting two thermally chargeable supercapacitor units in series,the generated output voltage of 500 mV further confirmed the stability of devices.When a single device was worn on the arm,a thermal voltage of 208.3 mV was obtained indicating the possibility of application in wearable electronics.展开更多
基金supported by National Natural Science Foundation of China(51672308,51972025,61888102,and 62004187).
文摘Two-dimension(2D)van der Waals heterojunction holds essential promise in achieving high-performance flexible near-infrared(NIR)photodetector.Here,we report the successful fabrication of ZnSb/Ti_(3)C_(2)T_(x)MXene based flexible NIR photodetector array via a facile photolithography technology.The single ZnSb/Ti_(3)C_(2)T_(x)photodetector exhibited a high light-to-dark current ratio of 4.98,fast response/recovery time(2.5/1.3 s)and excellent stability due to the tight connection between 2D ZnSb nanoplates and 2D Ti_(3)C_(2)T_(x)MXene nanoflakes,and the formed 2D van der Waals heterojunction.Thin polyethylene terephthalate(PET)substrate enables the ZnSb/Ti_(3)C_(2)T_(x)photodetector withstand bending such that stable photoelectrical properties with non-obvious change were maintained over 5000 bending cycles.Moreover,the ZnSb/Ti_(3)C_(2)T_(x)photodetectors were integrated into a 26×5 device array,realizing a NIR image sensing application.
基金supported by the National Natural Science Foundation of China(52273256)Beijing Municipal Natural Science Foundation(L223006)Beijing Institute of Technology Research Found Program for Young Scholars.
文摘Thermally chargeable supercapacitors can collect low-grade heat generated by the human body and convert it into electricity as a power supply unit for wearable electronics.However,the low Seebeck coefficient and heat-to-electricity conversion efficiency hinder further application.In this paper,we designed a high-performance thermally chargeable supercapacitor device composed of ZnMn_(2)O_(4)@Ti_(3)C_(2)T_(x)MXene composites(ZMO@Ti_(3)C_(2)T_(x)MXene)electrode and UIO-66 metal–organic framework doped multichannel polyvinylidene fluoridehexafluoro-propylene ionogel electrolyte,which realized the thermoelectric conversion and electrical energy storage at the same time.This thermally chargeable supercapacitor device exhibited a high Seebeck coefficient of 55.4 mV K^(−1),thermal voltage of 243 mV,and outstanding heat-to-electricity conversion efficiency of up to 6.48%at the temperature difference of 4.4 K.In addition,this device showed excellent charge–discharge cycling stability at high-temperature differences(3 K)and low-temperature differences(1 K),respectively.Connecting two thermally chargeable supercapacitor units in series,the generated output voltage of 500 mV further confirmed the stability of devices.When a single device was worn on the arm,a thermal voltage of 208.3 mV was obtained indicating the possibility of application in wearable electronics.