The phase field method was applied to study the microstructure evolution of Ni4Ti3 precipitates during stress-free and stress-assisted aging of bi-crystalline NiTi shape memory alloys (SAMs) with two different initi...The phase field method was applied to study the microstructure evolution of Ni4Ti3 precipitates during stress-free and stress-assisted aging of bi-crystalline NiTi shape memory alloys (SAMs) with two different initial Ni-contents of 51.5% and 52.5% (mole fraction), respectively. The simulation results show that, during stress-free aging of the NiTi alloy with a low supersaturation of Ni (i.e., Ti-51.5%Ni), the Ni4Ti3 precipitates exhibit a heterogeneous distribution with a high number density of particles at the grain boundary, leaving most of the grain interiors free of precipitates; while for the NiTi alloy with a high supersaturation of Ni (i.e., Ti-52.5%Ni), the Ni4Ti3 precipitates show a homogeneous distribution across the entire simulation system. The stress-assisted aging can give rise to homogeneous distribution of the precipitates, regardless of the initial Ni-content; however, the distribution of variant type within the two grains is heterogeneous.展开更多
Ni3Al-based alloys are excellent candidates for the structural materials used for turbine engines due to their excellent high-temperature properties.This study aims at laser powder bed fusion and post-hot isostatic pr...Ni3Al-based alloys are excellent candidates for the structural materials used for turbine engines due to their excellent high-temperature properties.This study aims at laser powder bed fusion and post-hot isostatic pressing(HIP)treatment of Ni3Al-based IC^(-2)21 M alloy with a highγ0 volume fraction.The as-built samples exhibits unavoidable solidification cracking and ductility dip cracking,and the laser parameter optimization can reduce the crack density to 1.34 mm/mm^(2).Transmission electron microscope(TEM)analysis reveals ultra-fine nanoscaleγ0 phases in the as-built samples due to the high cooling rate during rapid solidification.After HIP treatment,a fully dense structure without cracking defects is achieved,which exhibits an equiaxed structure with grain size~120-180μm and irregularly shapedγ0 precipitates~1-3μm with a prominently high fraction of 86%.The room-temperature tensile test of as-built samples shows a high ultimate tensile strength(σUTS)of 1039.7 MPa and low fracture elongation of 6.4%.After HIP treatment,a significant improvement in ductility(15.7%)and a slight loss of strength(σUTS of 831.7 MPa)are obtained by eliminating the crack defects.Both the as-built and HIP samples exhibit retained highσUTS values of 589.8 MPa and 786.2 MPa,respectively,at 900C.The HIP samples exhibita slight decrease in ductility to~12.9%,indicating excellent high-temperature mechanical performance.Moreover,the abnormal increase in strength and decrease in ductility suggest the critical role of a highγ0 fraction in cracking formation.The intrinsic heat treatment during repeating thermal cycles can induce brittleness and trigger cracking initiation in the heat-affected zone with notable deteriorating ductility.The results indicate that the combination of LPBF and HIP can effectively reduce the crack density and enhance the mechanical properties of Ni_(3)Al-based alloy,making it a promising material for high-temperature applications.展开更多
Exploring a novel strategy for large-scale production of battery-type Ni(OH)_(2)-based composites,with excellent capacitive performance,is still greatly challenging.Herein,we developed a facile and cost-effective stra...Exploring a novel strategy for large-scale production of battery-type Ni(OH)_(2)-based composites,with excellent capacitive performance,is still greatly challenging.Herein,we developed a facile and cost-effective strategy to in situ grow a layer of Ni(OH)_(2)/Ti_(3)C_(2)T_(x)composite on the nickel foam(NF)collector,where Ti_(3)C_(2)T_(x)is not only a conductive component,but also a catalyst that accelerates the oxidation of NF to Ni(OH)_(2).Detailed analysis reveals that the crystallinity,morphology,and electronic structure of the integrated electrode can be tuned via the electrochemical activation,which is beneficial for improving electrical conductivity and redox activity.As expected,the integrated electrode shows a specific capacity of 1.09 C cm^(-2)at 1 mA cm^(-2)after three custom activation cycles and maintains 92.4%of the initial capacity after 1500 cycles.Moreover,a hybrid supercapacitor composed of Ni(OH)_(2)/Ti_(3)C_(2)T_(x)/NF cathode and activated carbon anode provides an energy density of 0.1 mWh cm^(-2)at a power density of 0.97 mW cm^(-2),and excellent cycling stability with about 110%capacity retention rate after 5000 cycles.This work would afford an economical and convenient method to steer commercial Ni foam into advanced Ni(OH)_(2)-based composite materials as binder-free electrodes for hybrid supercapacitors.展开更多
The formation mechanism of stoichiometry Ti_5Si_3 by mechanical alloying (MA)from elemental powders has been investigated. The results of XRD and SEM analyses of the powdershow that Ti_5Si_3 can be synthesized by MA i...The formation mechanism of stoichiometry Ti_5Si_3 by mechanical alloying (MA)from elemental powders has been investigated. The results of XRD and SEM analyses of the powdershow that Ti_5Si_3 can be synthesized by MA in a planetary mill with two different formationmechanisms. Ti_5Si_3 was formed gradually with the mechanical collusion reaction (MCR) mechanismunder a lower impact energy, and the Ti_5Si_3 was formed abruptly with the self-propagatinghigh-temperature synthesis (SHS) formation mechanism under a higher impact energy.展开更多
In the present paper,the development of Ti3Al-Nb-Mo-Si alloys for high oxidation resistance is reviewed.Beside of weight gain of alloys with different Nb and Si addition is tested,the evaluation of comprehensive mecha...In the present paper,the development of Ti3Al-Nb-Mo-Si alloys for high oxidation resistance is reviewed.Beside of weight gain of alloys with different Nb and Si addition is tested,the evaluation of comprehensive mechanical properties has been taken,include the room-temperature and 700℃ tensile properties,thermal stability,creep rupture and fracture toughness of the alloys,It has shown that the oxidation resistance and mechanical properties were significantly affected by the variation of Nb and Si contents.The composition with the best balance of properties is Ti-24Al-13Nb-1.5Mo-0.5Si and Ti-24Al-15Nb-1.5Mo,which is mush higher than that of Super,α_2 alloy (Ti-25Al-10Nb-3V-1Mo).展开更多
The phase transformation and deformation mechanism of the alloy based on composition Ti_3Al with addition of Nb,V,Mo have been studied by use of transmission electron microscopy (TEM).It has been shown that the orient...The phase transformation and deformation mechanism of the alloy based on composition Ti_3Al with addition of Nb,V,Mo have been studied by use of transmission electron microscopy (TEM).It has been shown that the orientation relationship of α_2 phase transformed from β phase is:(0001)α_2// (l10)β,[1210]α_2//[111]β.The present dislocation slip systems in α_2 phase are (1100)[0001] and (1100)<1120>.There also exist α_2 twins which have new twin relationship and the twin plane is (2021).展开更多
The microstructures, the phase transformation characteristics, and the mechanical properties of the Ti50Ni47Fe3 alloy in as-forged and as-cross-rolled states were investigated. It is found that, after cross-rolling, t...The microstructures, the phase transformation characteristics, and the mechanical properties of the Ti50Ni47Fe3 alloy in as-forged and as-cross-rolled states were investigated. It is found that, after cross-rolling, the phase transformation temperature (Ms) of the alloy decreases drastically and the grains get refined. Moreover, its yield strength and fracture strength after cross-rolling hit 540 MPa and 687 MPa respectively, up by about 200 MPa over those in as-forged state.展开更多
Ti_3Al+Si+Nb alloys containing Ti_5Si_3 have the potential in ductility improvements. In this paper, the fracture mechanism of this alloy is under investigation. Three kinds of alloys in the as rolled condition were p...Ti_3Al+Si+Nb alloys containing Ti_5Si_3 have the potential in ductility improvements. In this paper, the fracture mechanism of this alloy is under investigation. Three kinds of alloys in the as rolled condition were prepared for determination of KIC values and calculation of J-resistance curves. The results show that the morphology of Ti_5Si_3 has a great influence on the KIC. values of the alloys and crack growth resistance. The fracture mechanism is controlled by Ti_5Si_3 particles.展开更多
A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer...A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer were investigated. The composite layer has graded microstructures and compositions, due to the fast melting followed by rapid solidification and cooling during laser cladding. The TiC powders are completely dissolved into the melted layer during melting and segregated as fine dendrites when solidified. The size of TiC dendrites decreases with increasing depth. Y2O3 fine particles distribute in the whole clad layer. The Y2O3 particle enhanced Ni/TiC composite layer has a quite uniform hardness along depth with a maximum value of HV1380, which is 4 times higher than the initial hardness. The wear resistance of the Ti alloy is significantly improved after laser cladding due to the high hardness of the composite coating.展开更多
The first-principles method based on the projector augmented wave method within the generalized gradient approximation was employed to calculate the superlattice intrinsic stacking fault(SISF) and complex stacking f...The first-principles method based on the projector augmented wave method within the generalized gradient approximation was employed to calculate the superlattice intrinsic stacking fault(SISF) and complex stacking fault(CSF) energies of the binary Ni3Al alloys with different Al contents and the ternary Ni3Al intermetallic alloys with addition of alloying elements,such as Pd,Pt,Ti,Mo,Ta,W and Re.The results show that the energies of SISF and CSF increase significantly with increase of Al contents in Ni3Al.Addition of Pd and Pt occupying the Ni sublattices does not change the SISF and CSF energies of Ni3Al markedly in comparison with the Ni-23.75Al alloy.While addition of alloying elements,such as Ti,Mo,Ta,W and Re,occupying the Al sublattices dramatically increases the SISF and CSF energies of Ni3Al.The results suggest that the energies of SISF and CSF are dependent both on the Al contents and on the site occupancy of the ternary alloying element in Ni3Al intermetallic alloys.展开更多
The isothermal oxidation behaviors of three kinds of Ni3Al-Mo based alloys at 1150 ℃ were studied.The morphology,structure and element distribution of oxide scales of the alloys were researched by scanning electron m...The isothermal oxidation behaviors of three kinds of Ni3Al-Mo based alloys at 1150 ℃ were studied.The morphology,structure and element distribution of oxide scales of the alloys were researched by scanning electron microscopy,X-ray diffraction and electron probe microanalysis.The research results show that there are three oxide layers,an outer layer of NiO,an intermediate layer mainly composed of NiO,NiAl2O4 and a small amount of NiMoO4,and an inner layer of NiAl2O4 and Al2O3.Re element was mainly distributed in the intermediate layer,which plays a role as "diffusion barrier" in the process of oxidation,and effectively reduces the diffusion rate of Al and Mo elements outward and diffusion rate of O element inward.As a result,a Al-rich oxide layer formed in the inner layer inhibits the growth of oxide layer and improves the oxidation resistance of the alloy.展开更多
The microstructures of Ti-14Al-21Nb and Ti-14Al-20Nb-2Mo-3.2V(wt%) alloys have been investikated by transmission electron microscopy(TEM).The phase constitution and the orientation relationship between α2and βwere i...The microstructures of Ti-14Al-21Nb and Ti-14Al-20Nb-2Mo-3.2V(wt%) alloys have been investikated by transmission electron microscopy(TEM).The phase constitution and the orientation relationship between α2and βwere identified by means of the selected area diffraction and the micro-diffraction techniques.Results show that,compared to Ti-14Al-21Nb,the alloying elements Mo and V can greatly increase the fraction of β phase and improve significantly the microstructures of Ti-14Al-20Nb-2Mo-3.2V.The ordered B2 structure is also evident in the residual βgrains of the latter alloy.展开更多
The oxidation behavior of sputtered Ni-3Cr-20Al coating at 900℃ in air was investigated. A dense Al2O3 layer was formed on the sputtered Ni-3Cr-20AI coating after 200 h oxidation. However, owing to the segregation of...The oxidation behavior of sputtered Ni-3Cr-20Al coating at 900℃ in air was investigated. A dense Al2O3 layer was formed on the sputtered Ni-3Cr-20AI coating after 200 h oxidation. However, owing to the segregation of Ni3Al during oxidation process at high temperature, the spinel NiAI2O4 was also formed in the Al2O3 layer. It was found that the formation of NiAI204 had no detrimental effect on the oxidation resistance of the sputtered N?3O-20AI coating due to the excellent adhesion shown by the Al2O3 and NiAl2O4complex oxide scale.展开更多
基金Project (50871039) supported by the National Natural Science Foundation of ChinaProject (2011ZB0007) supported by the Fundamental Research Funds for Central Universities of ChinaProject (201104090881) support by China Postdoctoral Science Foundation
文摘The phase field method was applied to study the microstructure evolution of Ni4Ti3 precipitates during stress-free and stress-assisted aging of bi-crystalline NiTi shape memory alloys (SAMs) with two different initial Ni-contents of 51.5% and 52.5% (mole fraction), respectively. The simulation results show that, during stress-free aging of the NiTi alloy with a low supersaturation of Ni (i.e., Ti-51.5%Ni), the Ni4Ti3 precipitates exhibit a heterogeneous distribution with a high number density of particles at the grain boundary, leaving most of the grain interiors free of precipitates; while for the NiTi alloy with a high supersaturation of Ni (i.e., Ti-52.5%Ni), the Ni4Ti3 precipitates show a homogeneous distribution across the entire simulation system. The stress-assisted aging can give rise to homogeneous distribution of the precipitates, regardless of the initial Ni-content; however, the distribution of variant type within the two grains is heterogeneous.
基金supported by the National Key Research and Development Program of China[grant numbers 2019YFA0705300,2021YFB3702502]National Natural Science Foundation of China[grant numbers 52001191,52127807,52271035]+3 种基金Independent Research Project of State Key Laboratory of Advanced Special Steel,Shanghai Key Laboratory of Advanced FerrometallurgyShanghai University,China[grant numbers SKLASS 2022-Z10]the Natural Science Foundation of Shanghai,China[grant.23ZR1421500]SPMI Project from Shanghai Academy of Spaceflight Technology,China[grant.SPMI2022-06].
文摘Ni3Al-based alloys are excellent candidates for the structural materials used for turbine engines due to their excellent high-temperature properties.This study aims at laser powder bed fusion and post-hot isostatic pressing(HIP)treatment of Ni3Al-based IC^(-2)21 M alloy with a highγ0 volume fraction.The as-built samples exhibits unavoidable solidification cracking and ductility dip cracking,and the laser parameter optimization can reduce the crack density to 1.34 mm/mm^(2).Transmission electron microscope(TEM)analysis reveals ultra-fine nanoscaleγ0 phases in the as-built samples due to the high cooling rate during rapid solidification.After HIP treatment,a fully dense structure without cracking defects is achieved,which exhibits an equiaxed structure with grain size~120-180μm and irregularly shapedγ0 precipitates~1-3μm with a prominently high fraction of 86%.The room-temperature tensile test of as-built samples shows a high ultimate tensile strength(σUTS)of 1039.7 MPa and low fracture elongation of 6.4%.After HIP treatment,a significant improvement in ductility(15.7%)and a slight loss of strength(σUTS of 831.7 MPa)are obtained by eliminating the crack defects.Both the as-built and HIP samples exhibit retained highσUTS values of 589.8 MPa and 786.2 MPa,respectively,at 900C.The HIP samples exhibita slight decrease in ductility to~12.9%,indicating excellent high-temperature mechanical performance.Moreover,the abnormal increase in strength and decrease in ductility suggest the critical role of a highγ0 fraction in cracking formation.The intrinsic heat treatment during repeating thermal cycles can induce brittleness and trigger cracking initiation in the heat-affected zone with notable deteriorating ductility.The results indicate that the combination of LPBF and HIP can effectively reduce the crack density and enhance the mechanical properties of Ni_(3)Al-based alloy,making it a promising material for high-temperature applications.
基金supported by the NSF of China(Nos.21971143,21805165,22209098)the 111 Project(D20015)+1 种基金the major research and development project of Hubei Three Gorges Laboratory(2022-3)the Natural Science Foundation of Hubei Province(2022CFB326)
文摘Exploring a novel strategy for large-scale production of battery-type Ni(OH)_(2)-based composites,with excellent capacitive performance,is still greatly challenging.Herein,we developed a facile and cost-effective strategy to in situ grow a layer of Ni(OH)_(2)/Ti_(3)C_(2)T_(x)composite on the nickel foam(NF)collector,where Ti_(3)C_(2)T_(x)is not only a conductive component,but also a catalyst that accelerates the oxidation of NF to Ni(OH)_(2).Detailed analysis reveals that the crystallinity,morphology,and electronic structure of the integrated electrode can be tuned via the electrochemical activation,which is beneficial for improving electrical conductivity and redox activity.As expected,the integrated electrode shows a specific capacity of 1.09 C cm^(-2)at 1 mA cm^(-2)after three custom activation cycles and maintains 92.4%of the initial capacity after 1500 cycles.Moreover,a hybrid supercapacitor composed of Ni(OH)_(2)/Ti_(3)C_(2)T_(x)/NF cathode and activated carbon anode provides an energy density of 0.1 mWh cm^(-2)at a power density of 0.97 mW cm^(-2),and excellent cycling stability with about 110%capacity retention rate after 5000 cycles.This work would afford an economical and convenient method to steer commercial Ni foam into advanced Ni(OH)_(2)-based composite materials as binder-free electrodes for hybrid supercapacitors.
文摘The formation mechanism of stoichiometry Ti_5Si_3 by mechanical alloying (MA)from elemental powders has been investigated. The results of XRD and SEM analyses of the powdershow that Ti_5Si_3 can be synthesized by MA in a planetary mill with two different formationmechanisms. Ti_5Si_3 was formed gradually with the mechanical collusion reaction (MCR) mechanismunder a lower impact energy, and the Ti_5Si_3 was formed abruptly with the self-propagatinghigh-temperature synthesis (SHS) formation mechanism under a higher impact energy.
文摘In the present paper,the development of Ti3Al-Nb-Mo-Si alloys for high oxidation resistance is reviewed.Beside of weight gain of alloys with different Nb and Si addition is tested,the evaluation of comprehensive mechanical properties has been taken,include the room-temperature and 700℃ tensile properties,thermal stability,creep rupture and fracture toughness of the alloys,It has shown that the oxidation resistance and mechanical properties were significantly affected by the variation of Nb and Si contents.The composition with the best balance of properties is Ti-24Al-13Nb-1.5Mo-0.5Si and Ti-24Al-15Nb-1.5Mo,which is mush higher than that of Super,α_2 alloy (Ti-25Al-10Nb-3V-1Mo).
文摘The phase transformation and deformation mechanism of the alloy based on composition Ti_3Al with addition of Nb,V,Mo have been studied by use of transmission electron microscopy (TEM).It has been shown that the orientation relationship of α_2 phase transformed from β phase is:(0001)α_2// (l10)β,[1210]α_2//[111]β.The present dislocation slip systems in α_2 phase are (1100)[0001] and (1100)<1120>.There also exist α_2 twins which have new twin relationship and the twin plane is (2021).
文摘The microstructures, the phase transformation characteristics, and the mechanical properties of the Ti50Ni47Fe3 alloy in as-forged and as-cross-rolled states were investigated. It is found that, after cross-rolling, the phase transformation temperature (Ms) of the alloy decreases drastically and the grains get refined. Moreover, its yield strength and fracture strength after cross-rolling hit 540 MPa and 687 MPa respectively, up by about 200 MPa over those in as-forged state.
文摘Ti_3Al+Si+Nb alloys containing Ti_5Si_3 have the potential in ductility improvements. In this paper, the fracture mechanism of this alloy is under investigation. Three kinds of alloys in the as rolled condition were prepared for determination of KIC values and calculation of J-resistance curves. The results show that the morphology of Ti_5Si_3 has a great influence on the KIC. values of the alloys and crack growth resistance. The fracture mechanism is controlled by Ti_5Si_3 particles.
基金Projects (51101096, 51002093) supported by the National Natural Science Foundation of ChinaProject (1052nm05000) supported by Special Foundation of the Shanghai Science and Technology Commission for Nano-Materials ResearchProject (J51042) supported by Leading Academic Discipline Project of the Shanghai Education Commission, China
文摘A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer were investigated. The composite layer has graded microstructures and compositions, due to the fast melting followed by rapid solidification and cooling during laser cladding. The TiC powders are completely dissolved into the melted layer during melting and segregated as fine dendrites when solidified. The size of TiC dendrites decreases with increasing depth. Y2O3 fine particles distribute in the whole clad layer. The Y2O3 particle enhanced Ni/TiC composite layer has a quite uniform hardness along depth with a maximum value of HV1380, which is 4 times higher than the initial hardness. The wear resistance of the Ti alloy is significantly improved after laser cladding due to the high hardness of the composite coating.
基金Project(50871065) supported by the National Natural Science Foundation of ChinaProjects(08DJ1400402,09JC1407200,10DZ2290904) supported by the Science and Technology Committee of Shanghai Municipality,China
文摘The first-principles method based on the projector augmented wave method within the generalized gradient approximation was employed to calculate the superlattice intrinsic stacking fault(SISF) and complex stacking fault(CSF) energies of the binary Ni3Al alloys with different Al contents and the ternary Ni3Al intermetallic alloys with addition of alloying elements,such as Pd,Pt,Ti,Mo,Ta,W and Re.The results show that the energies of SISF and CSF increase significantly with increase of Al contents in Ni3Al.Addition of Pd and Pt occupying the Ni sublattices does not change the SISF and CSF energies of Ni3Al markedly in comparison with the Ni-23.75Al alloy.While addition of alloying elements,such as Ti,Mo,Ta,W and Re,occupying the Al sublattices dramatically increases the SISF and CSF energies of Ni3Al.The results suggest that the energies of SISF and CSF are dependent both on the Al contents and on the site occupancy of the ternary alloying element in Ni3Al intermetallic alloys.
基金National Natural Science Foundation of China(No.52201103)Natural Science Basis Research Plan in Shaanxi Province of China(No.2023JCYB445)Fundamental Research Funds for the Central Universities of CHD(Nos.300102122201,300102122106)。
基金Project(50971012) supported by the National Natural Science Foundation of China
文摘The isothermal oxidation behaviors of three kinds of Ni3Al-Mo based alloys at 1150 ℃ were studied.The morphology,structure and element distribution of oxide scales of the alloys were researched by scanning electron microscopy,X-ray diffraction and electron probe microanalysis.The research results show that there are three oxide layers,an outer layer of NiO,an intermediate layer mainly composed of NiO,NiAl2O4 and a small amount of NiMoO4,and an inner layer of NiAl2O4 and Al2O3.Re element was mainly distributed in the intermediate layer,which plays a role as "diffusion barrier" in the process of oxidation,and effectively reduces the diffusion rate of Al and Mo elements outward and diffusion rate of O element inward.As a result,a Al-rich oxide layer formed in the inner layer inhibits the growth of oxide layer and improves the oxidation resistance of the alloy.
文摘The microstructures of Ti-14Al-21Nb and Ti-14Al-20Nb-2Mo-3.2V(wt%) alloys have been investikated by transmission electron microscopy(TEM).The phase constitution and the orientation relationship between α2and βwere identified by means of the selected area diffraction and the micro-diffraction techniques.Results show that,compared to Ti-14Al-21Nb,the alloying elements Mo and V can greatly increase the fraction of β phase and improve significantly the microstructures of Ti-14Al-20Nb-2Mo-3.2V.The ordered B2 structure is also evident in the residual βgrains of the latter alloy.
基金National Natural Science Foundation of China !under grant 59671060
文摘The oxidation behavior of sputtered Ni-3Cr-20Al coating at 900℃ in air was investigated. A dense Al2O3 layer was formed on the sputtered Ni-3Cr-20AI coating after 200 h oxidation. However, owing to the segregation of Ni3Al during oxidation process at high temperature, the spinel NiAI2O4 was also formed in the Al2O3 layer. It was found that the formation of NiAI204 had no detrimental effect on the oxidation resistance of the sputtered N?3O-20AI coating due to the excellent adhesion shown by the Al2O3 and NiAl2O4complex oxide scale.