The effect of post-weld heat treatment on the microstructure characterization of electron beam welded(EBW) joints of Ti3Al-Nb was investigated.The results show that the microstructure of the weld is predominantly meta...The effect of post-weld heat treatment on the microstructure characterization of electron beam welded(EBW) joints of Ti3Al-Nb was investigated.The results show that the microstructure of the weld is predominantly metastable,the columnar crystal metastructure of B2 phase.The microstructure morphology of the weld is significantly influenced by the method of the heat treatment.The microstructure of the weld is laminar structure(Widmanstaten structure) consisted of interphase α2 and B2 after post-weld heat treatment of 1000 ℃/2 h.The mechanism of the post-weld heat treatment makes the hardness distribution of joints homogeneous,but makes the whole joint somehow softened.展开更多
The microstructures of Ti-14Al-21Nb and Ti-14Al-20Nb-2Mo-3.2V(wt%) alloys have been investikated by transmission electron microscopy(TEM).The phase constitution and the orientation relationship between α2and βwere i...The microstructures of Ti-14Al-21Nb and Ti-14Al-20Nb-2Mo-3.2V(wt%) alloys have been investikated by transmission electron microscopy(TEM).The phase constitution and the orientation relationship between α2and βwere identified by means of the selected area diffraction and the micro-diffraction techniques.Results show that,compared to Ti-14Al-21Nb,the alloying elements Mo and V can greatly increase the fraction of β phase and improve significantly the microstructures of Ti-14Al-20Nb-2Mo-3.2V.The ordered B2 structure is also evident in the residual βgrains of the latter alloy.展开更多
Recent work on Ti_3Al base alloy,TAC-1, developed in CISRI, including investigations of effects of modification in alloying and TMP on microstructural characteristics and mechanical behaviour,indicates that alloy TAC ...Recent work on Ti_3Al base alloy,TAC-1, developed in CISRI, including investigations of effects of modification in alloying and TMP on microstructural characteristics and mechanical behaviour,indicates that alloy TAC -1 is very promising structural material for a number of elevated temperature applications. Stuody dealing with a reverse relation between RT ductility and toughness found on TiA base alloy, TAC-2, led to development of a special heat treatment technique for producing a fine filly lamellar microstructure (FFL), which gives a high and balancing ductility and toughness. This is also of significance for promoting engineering applications of this alloy.展开更多
In the present paper,the development of Ti3Al-Nb-Mo-Si alloys for high oxidation resistance is reviewed.Beside of weight gain of alloys with different Nb and Si addition is tested,the evaluation of comprehensive mecha...In the present paper,the development of Ti3Al-Nb-Mo-Si alloys for high oxidation resistance is reviewed.Beside of weight gain of alloys with different Nb and Si addition is tested,the evaluation of comprehensive mechanical properties has been taken,include the room-temperature and 700℃ tensile properties,thermal stability,creep rupture and fracture toughness of the alloys,It has shown that the oxidation resistance and mechanical properties were significantly affected by the variation of Nb and Si contents.The composition with the best balance of properties is Ti-24Al-13Nb-1.5Mo-0.5Si and Ti-24Al-15Nb-1.5Mo,which is mush higher than that of Super,α_2 alloy (Ti-25Al-10Nb-3V-1Mo).展开更多
1.IntroductionThe research of the TD1 and TD2 al-loys based on intermetallic compound TiAl,which possesses high temperature capabilityfrom 650 to 700℃ was conducted.However,the limitation used at high temperature isi...1.IntroductionThe research of the TD1 and TD2 al-loys based on intermetallic compound TiAl,which possesses high temperature capabilityfrom 650 to 700℃ was conducted.However,the limitation used at high temperature isimposed by oxidation and degradation ofcreep strength,and relatively little know-展开更多
The deformation behaviour of Ti-25. 53at%Al at 1073K was investigated under the transmission electronmicroscope (TEM). A twinning-like deformation behaviour was observed. Accordins to the structure symine-try under TE...The deformation behaviour of Ti-25. 53at%Al at 1073K was investigated under the transmission electronmicroscope (TEM). A twinning-like deformation behaviour was observed. Accordins to the structure symine-try under TEM the twinning plane should be the prism plane. We believe that the twinnins-like deformationshould be carried out firstly on prism plane in (1120) direction, during which the DO19 structure was destroyed. Then an atom rearranging process would occur, after which the DO19 structure was recovered andtherefore the deformation trace could not be retained. That may be also the main reason that the twinning-likedeformation process was hardly observed previously.展开更多
The orientation changes and deformation behaviours of a Ti_3Al-based alloy was investigated by using micro-structure obervalion, pole figure and ODF analysis, as well as Chemical micro-analysis. A {0001} fibretexture ...The orientation changes and deformation behaviours of a Ti_3Al-based alloy was investigated by using micro-structure obervalion, pole figure and ODF analysis, as well as Chemical micro-analysis. A {0001} fibretexture an0d a weak {1210} <1010> texture were found after 35% cold rolling at room temlierature. The activation process of slip systems was discussed concerning formation of the rolling texture. Because of the low ductility of the material it is believed that the grains were deformed by simple glide suggested by Sachs.展开更多
Ti_3Al+Si+Nb alloys containing Ti_5Si_3 have the potential in ductility improvements. In this paper, the fracture mechanism of this alloy is under investigation. Three kinds of alloys in the as rolled condition were p...Ti_3Al+Si+Nb alloys containing Ti_5Si_3 have the potential in ductility improvements. In this paper, the fracture mechanism of this alloy is under investigation. Three kinds of alloys in the as rolled condition were prepared for determination of KIC values and calculation of J-resistance curves. The results show that the morphology of Ti_5Si_3 has a great influence on the KIC. values of the alloys and crack growth resistance. The fracture mechanism is controlled by Ti_5Si_3 particles.展开更多
Research on high temperature wear mechanism shows that the oxidation and corrosion resistance, high temperature hardness, thermal fatigue resistance and structure stability are main control factors for Ni_3Al based al...Research on high temperature wear mechanism shows that the oxidation and corrosion resistance, high temperature hardness, thermal fatigue resistance and structure stability are main control factors for Ni_3Al based alloys. Some important workpieces have been produced in mass quantity such as the guide shoe used in wire hot rolling. Ni_3Al based alloys could be used as cavitation erosion resistant materials mainly because of their high temperature mechanical properties, high work hardening ability and fatigue resistance. The weld electrode of Ni_3Al based alloy has been fabricated and used in the protection against cavitation erosion of big blade of hydraulic turbine in Sanmenxia Hydropower Station. Ni_3Al based alloys exhibit superproperties in the situation of high temperature over 1200℃, for example, in the work condition of flame tube of jet. Some of rivets used in combustor of jet are fabricated and tested.展开更多
The interfacial reaction behavior of Al and Ti_(3)AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the a...The interfacial reaction behavior of Al and Ti_(3)AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the addition of3.0 wt.%Ti_(3)AlC_(2)refines the average grain size ofα(Al)in the composite by 50.1%compared to Al6061 alloy.Morphological analyses indicate that an in-situ Al_(3Ti)transition layer of-180 nm in thickness is generated around the edge of Ti_(3)AlC_(2)at 720℃,forming a well-bonded Al-Al_(3Ti)interface.At this processing temperature,the ultimate tensile strength of A16061-3.0 wt.%Ti_(3)AlC_(2)composite is 199.2 MPa,an improvement of 41.5%over the Al6061 matrix.Mechanism analyses further elucidate that 720℃is favourable for forming the nano-sized transition layer at the Ti_(3)AlC_(2)edges.And,the thermal mismatch strengthening plays a dominant role in this state,with a strengthening contribution of about 74.8%.展开更多
In order to develop the liquid phase sintering process of WC-Ni3Al-B composites,the preparation process of WC+Ni3Al prealloyed powder by reaction synthesis of carbonyl Ni,analytical purity Al and coarse WC powders wa...In order to develop the liquid phase sintering process of WC-Ni3Al-B composites,the preparation process of WC+Ni3Al prealloyed powder by reaction synthesis of carbonyl Ni,analytical purity Al and coarse WC powders was investigated.DSC and XRD were adopted to study the procedure of phase transformation for the 3Ni+Al and 70%WC+(3Ni+Al) mixed powders in temperature ranges of 550-1200 °C and 25-1400 °C,respectively.The results demonstrate that the formation mechanism of Ni3Al depends on the reaction temperature.Besides WC phase,there exist Ni2Al3,NiAl and Ni3Al intermetallics in the powder mixture after heat treatment at 200-660 °C,while only NiAl and Ni3Al exist at 660-1100 °C.Homogeneous WC+Ni3Al powder mixture can be obtained in the temperature range of 1100-1200 °C.The WC-30%(Ni3Al-B) composites prepared from the mixed powders by conventional powder metallurgy technology show nearly full density and the shape of WC is round.WC-30%(Ni3Al-B) composites exhibit higher hardness of 9.7 GPa,inferior bending strength of 1800 MPa and similar fracture toughness of 18 MPa-m1/2 compared with commercial cemented carbides YGR45(WC-30%(Co-Ni-Cr)).展开更多
Fe3Al alloys with nearly full density were fabricated by plasma activated sintering(PAS) and hot pressing(HP) from mechanical alloyed Fe-28%Al(mole fraction) powders,respectively.It is found that A2-type Fe3Al a...Fe3Al alloys with nearly full density were fabricated by plasma activated sintering(PAS) and hot pressing(HP) from mechanical alloyed Fe-28%Al(mole fraction) powders,respectively.It is found that A2-type Fe3Al alloys were obtained by PAS,and they had a heterogeneous grain size distribution,most areas had a grain size smaller than 500 nm,and other areas had a grain size of about 1 μm.Different to PAS,D03-type Fe3Al alloys with a grain size of of 1-2 μm were obtained by HP.The compression testing results show that yield strength values of Fe3Al alloys fabricated by PAS and HP are almost equal at an elevated temperature,and the compression yield strength was about 100 MPa for all at 800 ℃.The room temperature compression ductility of Fe3Al alloys by PAS was about 20%,which was superior to that of Fe3Al alloys prepared by HP and casting.展开更多
文摘The effect of post-weld heat treatment on the microstructure characterization of electron beam welded(EBW) joints of Ti3Al-Nb was investigated.The results show that the microstructure of the weld is predominantly metastable,the columnar crystal metastructure of B2 phase.The microstructure morphology of the weld is significantly influenced by the method of the heat treatment.The microstructure of the weld is laminar structure(Widmanstaten structure) consisted of interphase α2 and B2 after post-weld heat treatment of 1000 ℃/2 h.The mechanism of the post-weld heat treatment makes the hardness distribution of joints homogeneous,but makes the whole joint somehow softened.
文摘The microstructures of Ti-14Al-21Nb and Ti-14Al-20Nb-2Mo-3.2V(wt%) alloys have been investikated by transmission electron microscopy(TEM).The phase constitution and the orientation relationship between α2and βwere identified by means of the selected area diffraction and the micro-diffraction techniques.Results show that,compared to Ti-14Al-21Nb,the alloying elements Mo and V can greatly increase the fraction of β phase and improve significantly the microstructures of Ti-14Al-20Nb-2Mo-3.2V.The ordered B2 structure is also evident in the residual βgrains of the latter alloy.
文摘Recent work on Ti_3Al base alloy,TAC-1, developed in CISRI, including investigations of effects of modification in alloying and TMP on microstructural characteristics and mechanical behaviour,indicates that alloy TAC -1 is very promising structural material for a number of elevated temperature applications. Stuody dealing with a reverse relation between RT ductility and toughness found on TiA base alloy, TAC-2, led to development of a special heat treatment technique for producing a fine filly lamellar microstructure (FFL), which gives a high and balancing ductility and toughness. This is also of significance for promoting engineering applications of this alloy.
文摘In the present paper,the development of Ti3Al-Nb-Mo-Si alloys for high oxidation resistance is reviewed.Beside of weight gain of alloys with different Nb and Si addition is tested,the evaluation of comprehensive mechanical properties has been taken,include the room-temperature and 700℃ tensile properties,thermal stability,creep rupture and fracture toughness of the alloys,It has shown that the oxidation resistance and mechanical properties were significantly affected by the variation of Nb and Si contents.The composition with the best balance of properties is Ti-24Al-13Nb-1.5Mo-0.5Si and Ti-24Al-15Nb-1.5Mo,which is mush higher than that of Super,α_2 alloy (Ti-25Al-10Nb-3V-1Mo).
文摘1.IntroductionThe research of the TD1 and TD2 al-loys based on intermetallic compound TiAl,which possesses high temperature capabilityfrom 650 to 700℃ was conducted.However,the limitation used at high temperature isimposed by oxidation and degradation ofcreep strength,and relatively little know-
文摘The deformation behaviour of Ti-25. 53at%Al at 1073K was investigated under the transmission electronmicroscope (TEM). A twinning-like deformation behaviour was observed. Accordins to the structure symine-try under TEM the twinning plane should be the prism plane. We believe that the twinnins-like deformationshould be carried out firstly on prism plane in (1120) direction, during which the DO19 structure was destroyed. Then an atom rearranging process would occur, after which the DO19 structure was recovered andtherefore the deformation trace could not be retained. That may be also the main reason that the twinning-likedeformation process was hardly observed previously.
文摘The orientation changes and deformation behaviours of a Ti_3Al-based alloy was investigated by using micro-structure obervalion, pole figure and ODF analysis, as well as Chemical micro-analysis. A {0001} fibretexture an0d a weak {1210} <1010> texture were found after 35% cold rolling at room temlierature. The activation process of slip systems was discussed concerning formation of the rolling texture. Because of the low ductility of the material it is believed that the grains were deformed by simple glide suggested by Sachs.
文摘Ti_3Al+Si+Nb alloys containing Ti_5Si_3 have the potential in ductility improvements. In this paper, the fracture mechanism of this alloy is under investigation. Three kinds of alloys in the as rolled condition were prepared for determination of KIC values and calculation of J-resistance curves. The results show that the morphology of Ti_5Si_3 has a great influence on the KIC. values of the alloys and crack growth resistance. The fracture mechanism is controlled by Ti_5Si_3 particles.
基金the High Technology Research and Development Programme of China
文摘Research on high temperature wear mechanism shows that the oxidation and corrosion resistance, high temperature hardness, thermal fatigue resistance and structure stability are main control factors for Ni_3Al based alloys. Some important workpieces have been produced in mass quantity such as the guide shoe used in wire hot rolling. Ni_3Al based alloys could be used as cavitation erosion resistant materials mainly because of their high temperature mechanical properties, high work hardening ability and fatigue resistance. The weld electrode of Ni_3Al based alloy has been fabricated and used in the protection against cavitation erosion of big blade of hydraulic turbine in Sanmenxia Hydropower Station. Ni_3Al based alloys exhibit superproperties in the situation of high temperature over 1200℃, for example, in the work condition of flame tube of jet. Some of rivets used in combustor of jet are fabricated and tested.
基金National Natural Science Foundation of China(No.52201103)Natural Science Basis Research Plan in Shaanxi Province of China(No.2023JCYB445)Fundamental Research Funds for the Central Universities of CHD(Nos.300102122201,300102122106)。
基金financially supported by the National Natural Science Foundation of China(No.51965040)Science and Technology Project of Jiangxi Provincial Department of Transportation,China(No.2022H0048)。
文摘The interfacial reaction behavior of Al and Ti_(3)AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the addition of3.0 wt.%Ti_(3)AlC_(2)refines the average grain size ofα(Al)in the composite by 50.1%compared to Al6061 alloy.Morphological analyses indicate that an in-situ Al_(3Ti)transition layer of-180 nm in thickness is generated around the edge of Ti_(3)AlC_(2)at 720℃,forming a well-bonded Al-Al_(3Ti)interface.At this processing temperature,the ultimate tensile strength of A16061-3.0 wt.%Ti_(3)AlC_(2)composite is 199.2 MPa,an improvement of 41.5%over the Al6061 matrix.Mechanism analyses further elucidate that 720℃is favourable for forming the nano-sized transition layer at the Ti_(3)AlC_(2)edges.And,the thermal mismatch strengthening plays a dominant role in this state,with a strengthening contribution of about 74.8%.
基金Project (2012CB723906) supported by the National Basic Research Program of China
文摘In order to develop the liquid phase sintering process of WC-Ni3Al-B composites,the preparation process of WC+Ni3Al prealloyed powder by reaction synthesis of carbonyl Ni,analytical purity Al and coarse WC powders was investigated.DSC and XRD were adopted to study the procedure of phase transformation for the 3Ni+Al and 70%WC+(3Ni+Al) mixed powders in temperature ranges of 550-1200 °C and 25-1400 °C,respectively.The results demonstrate that the formation mechanism of Ni3Al depends on the reaction temperature.Besides WC phase,there exist Ni2Al3,NiAl and Ni3Al intermetallics in the powder mixture after heat treatment at 200-660 °C,while only NiAl and Ni3Al exist at 660-1100 °C.Homogeneous WC+Ni3Al powder mixture can be obtained in the temperature range of 1100-1200 °C.The WC-30%(Ni3Al-B) composites prepared from the mixed powders by conventional powder metallurgy technology show nearly full density and the shape of WC is round.WC-30%(Ni3Al-B) composites exhibit higher hardness of 9.7 GPa,inferior bending strength of 1800 MPa and similar fracture toughness of 18 MPa-m1/2 compared with commercial cemented carbides YGR45(WC-30%(Co-Ni-Cr)).
基金Project (50871084) supported by the National Natural Science Foundation of ChinaProject (2009AA032601) supported by the National High Technology Research and Development Program of China
文摘Fe3Al alloys with nearly full density were fabricated by plasma activated sintering(PAS) and hot pressing(HP) from mechanical alloyed Fe-28%Al(mole fraction) powders,respectively.It is found that A2-type Fe3Al alloys were obtained by PAS,and they had a heterogeneous grain size distribution,most areas had a grain size smaller than 500 nm,and other areas had a grain size of about 1 μm.Different to PAS,D03-type Fe3Al alloys with a grain size of of 1-2 μm were obtained by HP.The compression testing results show that yield strength values of Fe3Al alloys fabricated by PAS and HP are almost equal at an elevated temperature,and the compression yield strength was about 100 MPa for all at 800 ℃.The room temperature compression ductility of Fe3Al alloys by PAS was about 20%,which was superior to that of Fe3Al alloys prepared by HP and casting.